311 research outputs found

    Dynamics and Topological Aspects of a Reconstructed Two-Dimensional Foam Time Series Using Potts Model on a Pinned Lattice

    Full text link
    We discuss a method to reconstruct an approximate two-dimensional foam structure from an incomplete image using the extended Potts mode with a pinned lattice we introduced in a previous paper. The initial information consists of the positions of the vertices only. We locate the centers of the bubbles using the Euclidean distance-map construction and assign at each vertex position a continuous pinning field with a potential falling off as 1/r1/r. We nucleate a bubble at each center using the extended Potts model and let the structure evolve under the constraint of scaled target areas until the bubbles contact each other. The target area constraint and pinning centers prevent further coarsening. We then turn the area constraint off and let the edges relax to a minimum energy configuration. The result is a reconstructed structure very close to the simulation. We repeated this procedure for various stages of the coarsening of the same simulated foam and investigated the simulation and reconstruction dynamics, topology and area distribution, finding that they agree to good accuracy.Comment: 31 pages, 20 Postscript figures Accepted in the Journal of Computational Physic

    The epigenetic regulator RINF (CXXC5) maintains SMAD7 expression in human immature erythroid cells and sustains red blood cells expansion

    Full text link
    The gene CXXC5, encoding a Retinoid-Inducible Nuclear Factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome (MDS) and adult acute myeloid leukemia (AML). RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies. However, functional studies in normal hematopoiesis are lacking, and its mechanism of action is unknow. Here, we evaluated the consequences of RINF silencing on cytokineinduced erythroid differentiation of human primary CD34+ progenitors. We found that RINF is expressed in immature erythroid cells and that RINF-knockdown accelerated erythropoietin-driven maturation, leading to a significant reduction (~45%) in the number of red blood cells (RBCs), without affecting cell viability. The phenotype induced by RINF-silencing was TGFÎČ-dependent and mediated by SMAD7, a TGFÎČ- signaling inhibitor. RINF upregulates SMAD7 expression by direct binding to its promoter and we found a close correlation between RINF and SMAD7 mRNA levels both in CD34+ cells isolated from bone marrow of healthy donors and MDS patients with del(5q). Importantly, RINF knockdown attenuated SMAD7 expression in primary cells and ectopic SMAD7 expression was sufficient to prevent the RINF knockdowndependent erythroid phenotype. Finally, RINF silencing affects 5’-hydroxymethylation of human erythroblasts, in agreement with its recently described role as a Tet2- anchoring platform in mouse. Altogether, our data bring insight into how the epigenetic factor RINF, as a transcriptional regulator of SMAD7, may fine-tune cell sensitivity to TGFÎČ superfamily cytokines and thus play an important role in both normal and pathological erythropoiesis

    Dignidad, Poder, Resistencia // Dignity, Power, Resistance

    Get PDF
    First To Go Abroad is a partnership between the Loyola Marymount University First To Go Program, LMU Study Abroad, and the Council on International Educational Exchange (CIEE), which seeks to increase study abroad opportunities for first-generation college students. In May 2017, fifteen first-gen students and two first-gen faculty mentors traveled together to Santiago, Dominican Republic, where they spent ten days exploring the country and learning about the local cultures, customs, and histories of the people who call the DR home. Travel is a privilege not all students have the same access to; for some students, this trip was the first time out of the United States. Like the first-generation college experience, the experience of international travel is marked by daily encounters with new spaces, people, and cultural practices that can be at once overwhelming and inspiring. This was a topic of exploration throughout the trip and the subject of the pages contained in this volume. The narratives published here are the product of a cross-institutional writing workshop, where students from LMU and the Pontificia Universidad CatĂłlica Madre y Maestra worked together to draft essays documenting their encounters with change that have pushed boundaries, broken down borders, and generated personal growth. We hope our readers around the world will appreciate these works, which showcase the transformative power of creative and collaborative global encounters

    The CAR‐HEMATOTOX score identifies patients at high risk for hematological toxicity, infectious complications, and poor treatment outcomes following brexucabtagene autoleucel for relapsed or refractory MCL

    Get PDF
    CD19-directed CAR T-cell therapy with brexucabtagene autoleucel (brexu-cel) has substantially improved treatment outcomes for patients with relapsed/refractory mantle cell lymphoma (r/r MCL). Prolonged cytopenias and infections represent common and clinically relevant side effects. In this multicenter observational study, we describe cytopenias and infections in 103 r/r MCL patients receiving brexu-cel. Furthermore, we report associations between the baseline CAR-HEMATOTOX (HT) score and toxicity events, non-relapse mortality (NRM), and progression-free/overall survival (PFS/OS). At lymphodepletion, 56 patients were HTlow (score 0–1) while 47 patients were HThigh (score ≄2). The HThigh cohort exhibited prolonged neutropenia (median 14 vs. 6 days, p < .001) and an increased rate of severe infections (30% vs. 5%, p = .001). Overall, 1-year NRM was 10.4%, primarily attributed to infections, and differed by baseline HT score (high vs. low: 17% vs. 4.6%, p = .04). HThigh patients experienced inferior 90-day complete response rate (68% vs. 93%, p = .002), PFS (median 9 months vs. not-reached, p < .0001), and OS (median 26 months vs. not-reached, p < .0001). Multivariable analyses showed that high HT scores were independently associated with severe hematotoxicity, infections, and poor PFS/OS. In conclusion, infections and hematotoxicity are common after brexu-cel and contribute to NRM. The baseline HT score identified patients at increased risk of poor treatment outcomes

    Genome sequencing of Xanthomonas axonopodis pv. phaseoli CFBP4834-R reveals that flagellar motility is not a general feature of xanthomonads.

    Full text link
    Xanthomonads are plant-associated bacteria that establish neutral, commensal or pathogenic relationships with plants. The list of common characteristics shared by all members of the genus Xanthomonas is now well established based on the entire genome sequences that are currently available and that represent various species, numerous pathovars of X. axonopodis (sensu Vauterin et al., 2000), X. oryzae and X. campestris, and many strains within some pathovars. These ?-proteobacteria are motile by a single polar flagellum. Motility is an important feature involved in biofilm formation, plant colonization and hence considered as a pathogenicity factor. X. axonopodis pv. phaseoli var. fuscans (Xapf) is one of the causal agents of common bacterial blight of bean and 4834-R is a highly aggressive strain of this pathogen that was isolated from a seed-borne epidemic in France in 1998. We obtained a high quality assembled sequence of the genome of this strain with 454-Solexa and 2X Sanger sequencing. Housekeeping functions are conserved in this genome that shares core characteristics with genomes of other xanthomonads: the six secretion systems which have been described so far in Gram negative bacteria are all present, as well as their ubiquitous substrates or effectors and a rather usual number of mobile elements. Elements devoted to the adaptation to the environment constitute an important part of the genome with a chemotaxis island and dispersed MCPs, numerous two-component systems, and numerous TonB dependent transporters. Furthermore, numerous multidrug efflux systems and functions dedicated to biofilm formation that confer resistance to stresses are also present. An intriguing feature revealed by genome analysis is a long deletion of 35 genes (33 kbp) involved in flagellar biosynthesis. This deletion is replaced by an insertion sequence called ISXapf2. Genes such as flgB to flgL and fliC to fleQ which are involved in the flagellar structure (rod, P- and L-ring, hook, cap and filament) are absent in the genome of strain 4834-R that is not motile. Primers were designed to detect this deletion by PCR in a collection of more than 300 strains representing different species and pathovars of Xanthomonas, and less than 5% of the tested xanthomonads strains were found nonmotile because of a deletion in the flagellum gene cluster. We observed that half of the Xapf strains isolated from the same epidemic than strain 4834-R was non-motile and that this ratio was conserved in the strains colonizing the next bean seed generation. Isolation of such variants in a natural epidemic reveals that either flagellar motility is not a key function for fitness or that some complementation occurs within the bacterial population. (Résumé d'auteur

    Live. Tell. Resist.

    Get PDF
    This edition of First-Gen Voices features the stories and work of 24 first-generation college students at multiple higher education institutions. The aim is to disseminate a story about us, for us, and consequently, the dominant cultures that have yet to learn from our power

    Molecular Implication of PP2A and Pin1 in the Alzheimer's Disease Specific Hyperphosphorylation of Tau

    Get PDF
    Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD) related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2A(T55α)) is a major Tau phosphatase in vivo, which contributes to its final phosphorylation state. We use NMR spectroscopy to determine the dephosphorylation rates of phospho-Tau by this major brain phosphatase, and present site-specific and kinetic data for the individual sites including the pS202/pT205 AT8 and pT231 AT180 phospho-epitopes.We demonstrate the importance of the PR55/Bα regulatory subunit of PP2A within this enzymatic process, and show that, unexpectedly, phosphorylation at the pT231 AT180 site negatively interferes with the dephosphorylation of the pS202/pT205 AT8 site. This inhibitory effect can be released by the phosphorylation dependent prolyl cis/trans isomerase Pin1. Because the stimulatory effect is lost with the dimeric PP2A core enzyme (PP2A(D)) or with a phospho-Tau T231A mutant, we propose that Pin1 regulates the interaction between the PR55/Bα subunit and the AT180 phospho-epitope on Tau.Our results show that phosphorylation of T231 (AT180) can negatively influence the dephosphorylation of the pS202/pT205 AT8 epitope, even without an altered PP2A pool. Thus, a priming dephosphorylation of pT231 AT180 is required for efficient PP2A(T55α)-mediated dephosphorylation of pS202/pT205 AT8. The sophisticated interplay between priming mechanisms reported for certain Tau kinases and the one described here for Tau phosphatase PP2A(T55α) may contribute to the hyperphosphorylation of Tau observed in AD neurons
    • 

    corecore