45 research outputs found

    West Nile virus spread in Europe: phylogeographic pattern analysis and key drivers

    Get PDF
    BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities.METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time.FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways.CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.</p

    Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model

    Get PDF
    Wild birds are reservoirs of several zoonotic arboviruses including West Nile virus (WNV) and Usutu virus (USUV), and are often monitored as indicators for virus introduction and spread. To optimize the bird surveillance for arboviruses in the Netherlands and to explore the possibilities for citizen science in surveillance, we investigated the suitability of using alternative sample types from live and dead birds. The sensitivity of molecular detection via RT-PCR of viral RNA in feather, heart, lung, throat and cloaca swabs from dead birds, and serum, dried blood spots (DBS) and throat and cloaca swabs from live birds were compared. IgY antibody detection was also assessed from DBS relative to serum on protein-microarray and virus neutralization test. Feathers showed a high detection sensitivity for USUV RNA in both live and dead birds, and no significant decrease was observed in the RNA loads in the feathers after being stored dry at room temperature for 43 days. Additionally, viral RNAs extracted from feathers of day 0 and 43 were successfully sequenced. The results indicated no statistical significant difference in sensitivity and viral loads detection in heart, spleen, and lung relative to corresponding brain samples in dead birds. In live birds, viral RNA loads did not differ between throat and cloaca swabs. This study identified less-invasive sample types that allows involvement of citizens in collecting samples from wild birds for arbovirus surveillance. Sensitivity and specificity of DBS-based antibody detections were significantly lower and therefore need optimization

    Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms

    Get PDF
    In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4&lt;10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable

    Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans

    Get PDF
    Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model

    No full text
    Wild birds are reservoirs of several zoonotic arboviruses including West Nile virus (WNV) and Usutu virus (USUV), and are often monitored as indicators for virus introduction and spread. To optimize the bird surveillance for arboviruses in the Netherlands and to explore the possibilities for citizen science in surveillance, we investigated the suitability of using alternative sample types from live and dead birds. The sensitivity of molecular detection via RT-PCR of viral RNA in feather, heart, lung, throat and cloaca swabs from dead birds, and serum, dried blood spots (DBS) and throat and cloaca swabs from live birds were compared. IgY antibody detection was also assessed from DBS relative to serum on protein-microarray and virus neutralization test. Feathers showed a high detection sensitivity for USUV RNA in both live and dead birds, and no significant decrease was observed in the RNA loads in the feathers after being stored dry at room temperature for 43 days. Additionally, viral RNAs extracted from feathers of day 0 and 43 were successfully sequenced. The results indicated no statistical significant difference in sensitivity and viral loads detection in heart, spleen, and lung relative to corresponding brain samples in dead birds. In live birds, viral RNA loads did not differ between throat and cloaca swabs. This study identified less-invasive sample types that allows involvement of citizens in collecting samples from wild birds for arbovirus surveillance. Sensitivity and specificity of DBS-based antibody detections were significantly lower and therefore need optimization

    Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model

    Get PDF
    Wild birds are reservoirs of several zoonotic arboviruses including West Nile virus (WNV) and Usutu virus (USUV), and are often monitored as indicators for virus introduction and spread. To optimize the bird surveillance for arboviruses in the Netherlands and to explore the possibilities for citizen science in surveillance, we investigated the suitability of using alternative sample types from live and dead birds. The sensitivity of molecular detection via RT-PCR of viral RNA in feather, heart, lung, throat and cloaca swabs from dead birds, and serum, dried blood spots (DBS) and throat and cloaca swabs from live birds were compared. IgY antibody detection was also assessed from DBS relative to serum on protein-microarray and virus neutralization test. Feathers showed a high detection sensitivity for USUV RNA in both live and dead birds, and no significant decrease was observed in the RNA loads in the feathers after being stored dry at room temperature for 43 days. Additionally, viral RNAs extracted from feathers of day 0 and 43 were successfully sequenced. The results indicated no statistical significant difference in sensitivity and viral loads detection in heart, spleen, and lung relative to corresponding brain samples in dead birds. In live birds, viral RNA loads did not differ between throat and cloaca swabs. This study identified less-invasive sample types that allows involvement of citizens in collecting samples from wild birds for arbovirus surveillance. Sensitivity and specificity of DBS-based antibody detections were significantly lower and therefore need optimization

    Detection of west nile virus in a common whitethroat (curruca communis) and culex mosquitoes in the Netherlands, 2020

    No full text
    On 22 August, a common whitethroat in the Netherlands tested positive for West Nile virus lineage 2. The same bird had tested negative in spring. Subsequent testing of Culex mosquitoes collected in August and early September in the same location generated two of 44 positive mosquito pools, providing first evidence for enzootic transmission in the Netherlands. Sequences generated from the positive mosquito pools clustered with sequences that originate from Germany, Austria and the Czech Republic

    Detection of West Nile virus in a common whitethroat (Curruca communis) and Culex mosquitoes in the Netherlands, 2020

    No full text
    On 22 August, a common whitethroat in the Netherlands tested positive for West Nile virus lineage 2. The same bird had tested negative in spring. Subsequent testing of Culex mosquitoes collected in August and early September in the same location generated two of 44 positive mosquito pools, providing first evidence for enzootic transmission in the Netherlands. Sequences generated from the positive mosquito pools clustered with sequences that originate from Germany, Austria and the Czech Republic. © 2020 European Centre for Disease Prevention and Control (ECDC). All rights reserved

    Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans

    No full text
    Animal experiments have shown that non-human primates, cats, ferrets, hamsters, rabbits and bats can be infected by SARS-CoV-2. In addition, SARS-CoV-2 RNA has been detected in felids, mink and dogs in the field. Here, we describe an in-depth investigation using whole genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced from humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period several weeks prior to detection. Despite enhanced biosecurity, early warning surveillance and immediate culling of infected farms, transmission occurred between mink farms in three big transmission clusters with unknown modes of transmission. Sixty-eight percent (68%) of the tested mink farm residents, employees and/or contacts had evidence of SARS-CoV-2 infection. Where whole genomes were available, these persons were infected with strains with an animal sequence signature, providing evidence of animal to human transmission of SARS-CoV-2 within mink farms
    corecore