213 research outputs found

    Growth in brine, at low temperature and different organic acids, of yeasts from table olives

    Get PDF
    The evolution of the main yeast species related to table olives (Pichia anomala, Pichia membranaefaciens, Pichia minuta, Saccharomyces cerevisiae, Candida diddensii, Candida famata, and Debaryomyces hansenii) at low temperature (7ºC) and different physico-chemical brine conditions was studied, using the log of the relative growth as response. In general, the NaCl concentration had a reduced effect, which was slightly greater at pH 3.5, although it was never significant. The effects of pH and type of acid were significant: the presence of acetic acid always diminished the yeast population with time; however the population was maintained, or even slightly increased, in the presence of lactic acid. Such effects were higher at pH 3.5 than at pH 4.0. The behavior of the yeast species was diverse. Sacch. cerevisiae, P. membranaefaciens, C. famata y Deb. hansenii disminished with time in 8% NaCl. The yeast population markedly decreased at pH 3.5, mainly in the case of Sacch. cerevisiae and C. famata. The presence of acetic acid decreased the yeast population in most species and always lead to a progressive diminution of it with time. No differences between species due to lactic acid was observed. These results can be of interest for the development of commercial presentations of table olives to be preserved at low temperature and with a reduced level of sodium.Se ha estudiado la evolución de las principales especies de levaduras relacionadas con las aceitunas de mesa (Pichia anomala, Pichia membranaefaciens, Pichia minuta, Saccharomyces cerevisiae, Candida diddensii, Candida famata , y Debaryomyces hansenii) a baja temperara (7ºC) y en diversas condiciones físico-químicas en las salmueras, utilizando el log del crecimiento relativo como respuesta. En general, la concentración de sal tiene un efecto muy limitado, que se aprecia algo más a pH 4, pero sin llegar a ser significativo. Los efectos del tipo de ácido y pH fueron significativos; la presencia de acético disminuye la población con el tiempo, mientras que con el láctico se mantiene e, incluso, se eleva ligeramente. Estos efectos se acentúan a pH 3,5. El comportamiento de cada levadura frente a las diferentes variables ha sido diverso. La población relativa de las especies Sacch. cerevisiae , P. membranaefaciens , C. famata y Deb. hansenii disminuyó con el tiempo en presencia del 8 % de NaCl. A pH 3,5 disminuye muy sensiblemente la población inicial en todos los casos, siendo tal influencia más destacada en Sacch. cerevisiae y C. famata. La presencia de acético disminuye de forma importante la población inicial inoculada en la mayoría de los casos y provocó siempre un descenso paulatino en las mismas. No se observó diferencias entre las especies debido al ácido láctico. Estos estudios pueden ser de interés para el desarrollo de presentaciones comerciales de aceitunas de mesa refrigeradas y con reducido nivel de sodio.Los autores desean expresar su gratitud a la CICYT (AGL2000-1539-CO2-01) y a la Unión Europea (FAIR-97-9526) por la financiación parcial de esta investigación.Peer reviewe

    Alite calcium sulfoaluminate cement: chemistry and thermodynamics

    Get PDF
    Calcium sulfoaluminate (CA)cementisabinderofincreasinginteresttothecementindustryandisundergoingrapiddevelopment.Currentformulationsdonotcontainalite;however,alitecalciumsulfoaluminate(aCA) cement is a binder of increasing interest to the cement industry and is undergoing rapid development. Current formulations do not contain alite; however, alite calcium sulfoaluminate (a-CA) cements can combine the favourable characteristics of Portland cement (PC) with those of CAcementwhilealsohavingalowercarbondioxidefootprintthanthecurrentgenerationofPCclinkers.ThispaperpresentstworesultsontheformationofaCA cement while also having a lower carbon dioxide footprint than the current generation of PC clinkers. This paper presents two results on the formation of a-CA clinkers. The first is a thermodynamic study demonstrating that the production of a-CAclinkerispossiblewithouttheuseofmineralisers,dopingwithforeignelements,orusingmultiplestagesofheating.ItisestablishedthataCA clinker is possible without the use of mineralisers, doping with foreign elements, or using multiple stages of heating. It is established that a-CA clinker can be readily produced in a standard process by controlling the oxygen and sulfur dioxide fugacity in the atmosphere. This allows for the stabilisation of ye’elimite to the higher temperatures required for alite stability. The second result establishes that when using fluorine to mineralise a-C$A clinker production, the iron content in the clinker is also an important variable. Although the exact mechanism of alite stabilisation is not known, it is shown that alite formation increases with the combination of calcium fluoride and iron (III) oxide in the mix

    State Capacity and the Environmental Investment Gap in Authoritarian States

    Get PDF
    We construct an n-period, constrained optimization model where the authoritarian ruler maximizes expected rents subject to budget constraint of available surplus. We show that the larger state capacity is in the previous period, the worse environmental quality will be in the next period: while infrastructural investment and environmental protection increase with state capacity, the former increases at a faster rate which enlarges the gap between the two?the environmental investment gap. Given infrastructural public goods typically damage the environment, the larger this gap is the worse the environmental quality would be. This follows from rulers? optimizing logic of equating marginal returns once we assume the declining marginal productivity of factors of production of surplus. We model three types of air and water pollutants in autocracies as a function of state capacity and other relevant variables. State capacity is associated with higher levels of all three types of pollutants

    Genetic Applications in Avian Conservation

    Get PDF
    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems

    Accelerated discovery of two crystal structure types in a complex inorganic phase field

    Get PDF
    The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2,3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4,5,6 and predicting compositions for known crystal structures7,8, with notable successes9,10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8,11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them

    Biochar composites: Emerging trends, field successes, and sustainability implications

    Get PDF
    corecore