23 research outputs found
Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.
BACKGROUND
The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic.
METHODS
For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere.
FINDINGS
Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories.
INTERPRETATION
COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies.
FUNDING
Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization
Risk factors for carriage of meningococcus in third-level students in Ireland: an unsupervised machine learning approach
The aim of this study was to examine the risk factors for pharyngeal carriage of meningococci in third-level students using an unsupervised machine learning approach. Data were gathered as part of meningococcal prevalence studies conducted by the Irish Meningitis and Sepsis Reference Laboratory (IMSRL). Pharyngeal swab cultures for meningococcal carriage were taken from each student once they had completed a single-page anonymous questionnaire addressing basic demographics, social behaviors, living arrangements, vaccination, and antibiotic history. Data were analyzed using multiple correspondence analysis through a machine learning approach.In total, 16,285 students who had a pharyngeal throat swab taken returned a fully completed questionnaire. Overall, meningococcal carriage rate was 20.6%, and the carriage of MenW was 1.9% (n = 323). Young Irish adults aged under 20 years and immunized with the meningococcal C vaccine had a higher MenW colonization rate (n = 171/1260, 13.5%) compared with non-Irish adults aged 20 years or older without the MenC vaccine (n = 5/81, 6%, chi-square = 3.6, p = .05). Unsupervised machine learning provides a useful technique to explore meningococcal carriage risk factors. The issue is very complex, and asked risk factors only explain a small proportion of the carriage. This technique could be used on other conditions to explore reasons for carriage. </div
MicroRNA 200b is upregulated in the lungs of fetal rabbits with surgically induced diaphragmatic hernia
OBJECTIVE: Profiling of miR-200b expression and its targets (transforming growth factor [TGF]-β2 and ZEB2) in the surgical rabbit congenital diaphragmatic hernia (DH) model before and after tracheal occlusion (TO). METHODS: Thirty-eight timed-pregnant rabbits had left DH creation on gestational day (GD) 23. On GD28, 17 randomly selected fetuses had TO. We harvested fetuses at GD23, GD28, or GD30. We calculated lung-to-body weight ratios, processed lungs for miR-200b in situ hybridization and real-time quantitative polymerase chain reaction, and evaluated effects on downstream targets TGF-β2 or ZEB2. RESULTS: We obtained 16 DH fetuses (n = 7 GD28 and n = 9 GD30), 13 TO fetuses (GD30), and 38 control fetuses (n = 15 GD23, n = 11 GD28, and n = 12 GD30). Diaphragmatic hernia lungs were hypoplastic, and TO resulted in control lung-to-body weight ratio levels. Term miR-200b-3p levels were significantly upregulated in the hypoplastic compared with control ipsilateral lung (1.906 ± 0.90 vs 0.7429 ± 0.44) (P < .01). Fetal TO ipsilateral lungs displayed a variable miR-200b response on in situ hybridization and polymerase chain reaction, with levels similar to control and congenital DH lungs. The TGF-β2 was unchanged in hypoplastic and TO lungs, and ZEB2 tended to be reduced in TO compared with DH lungs (1.79 [0.4-2.9] vs 0.73 [0.5-1.4]). CONCLUSIONS: Hypoplastic fetal rabbit lungs display upregulation of miR-200b expression although downstream targets are not different from controls. Following TO, fetal rabbit lungs display a variable miR-200b response.status: publishe
Prenatal microRNA miR-200b Therapy Improves Nitrofen-induced Pulmonary Hypoplasia Associated With Congenital Diaphragmatic Hernia
Epub ahead of printWe aimed to evaluate the use of miR-200b as a prenatal transplacental therapy in the nitrofen rat model of abnormal lung development and congenital diaphragmatic hernia (CDH).Background:Pulmonary hypoplasia (PH) and pulmonary hypertension determine mortality and morbidity in CDH babies. There is no safe medical prenatal treatment available. We previously discovered that higher miR-200b is associated with better survival in CDH babies. Here, we investigate the role of miR-200b in the nitrofen rat model of PH and CDH and evaluate its use as an in vivo prenatal therapy.Methods:We profiled miR-200b expression during nitrofen-induced PH using RT-qPCR and in situ hybridization in the nitrofen rat model of PH and CDH. The effects of nitrofen on downstream miR-200b targets were studied in bronchial lung epithelial cells using a SMAD luciferase assay, Western blotting and Immunohistochemistry. We evaluated miR-200b as a lung growth promoting therapy ex vivo and in vivo using lung explant culture and transplacental prenatal therapy in the nitrofen rat model.Results:We show that late lung hypoplasia in CDH is associated with (compensatory) upregulation of miR-200b in less hypoplastic lungs. Increasing miR-200b abundance with mimics early after nitrofen treatment decreases SMAD-driven TGF-β signaling and rescues lung hypoplasia both in vitro and in vivo. Also, prenatal miR-200b therapy decreases the observed incidence of CDH.Conclusions:Our data indicate that miR-200b improves PH and decreases the incidence of CDH. Future studies will further exploit this newly discovered prenatal therapy for lung hypoplasia and CDH.Objective: We aimed to evaluate the use of miR-200b as a prenatal transplacental therapy in the nitrofen rat model of abnormal lung development and congenital diaphragmatic hernia (CDH).
Background: Pulmonary hypoplasia (PH) and pulmonary hypertension determine mortality and morbidity in CDH babies. There is no safe medical prenatal treatment available. We previously discovered that higher miR-200b is associated with better survival in CDH babies. Here, we investigate the role of miR-200b in the nitrofen rat model of PH and CDH and evaluate its use as an in vivo prenatal therapy.
Methods: We profiled miR-200b expression during nitrofen-induced PH using RT-qPCR and in situ hybridization in the nitrofen rat model of PH and CDH. The effects of nitrofen on downstream miR-200b targets were studied in bronchial lung epithelial cells using a SMAD luciferase assay, Western blotting and Immunohistochemistry. We evaluated miR-200b as a lung growth promoting therapy ex vivo and in vivo using lung explant culture and transplacental prenatal therapy in the nitrofen rat model.
Results: We show that late lung hypoplasia in CDH is associated with (compensatory) upregulation of miR-200b in less hypoplastic lungs. Increasing miR-200b abundance with mimics early after nitrofen treatment decreases SMAD-driven TGF-β signaling and rescues lung hypoplasia both in vitro and in vivo. Also, prenatal miR-200b therapy decreases the observed incidence of CDH.
Conclusions: Our data indicate that miR-200b improves PH and decreases the incidence of CDH. Future studies will further exploit this newly discovered prenatal therapy for lung hypoplasia and CDHCCHCSP -Manitoba Lung Association(undefined)info:eu-repo/semantics/acceptedVersio
Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data
Background: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic.Methods: In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed.Findings: 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 837 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27-0·37]) and 82% at 8 weeks (0·18 [0·14-0·23]) following the week in which significant changes in population movements were recorded.Interpretation: The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide.Funding: Wellcome Trust (UK), Robert Koch Institute (Germany), Federal Ministry of Health (Germany), Pfizer, Merck, Health Protection Surveillance Centre (Ireland), SpID-Net project (Ireland), European Centre for Disease Prevention and Control (European Union), Horizon 2020 (European Commission), Ministry of Health (Poland), National Programme of Antibiotic Protection (Poland), Ministry of Science and Higher Education (Poland), Agencia de Salut Pública de Catalunya (Spain), Sant Joan de Deu Foundation (Spain), Knut and Alice Wallenberg Foundation (Sweden), Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland (Switzerland), and French Public Health Agency (France).</div