19 research outputs found

    Mosquito control by abatement programmes in the United States: perspectives and lessons for countries in sub-Saharan Africa.

    Get PDF
    Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA

    Spatial–temporal vector abundance and malaria transmission dynamics in Nchelenge and Lake Mweru islands, a region with a high burden of malaria in northern Zambia

    No full text
    Abstract Background Over a decade of vector control by indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) distribution on the mainland, and only LLINs on islands had a minimal impact on disease burden in Nchelenge district, northern Zambia. Anopheles funestus and Anopheles gambiae are vectors known only from the mainland. Understanding vector bionomics in the district is necessary for planning and targeting effective vector control. This study aimed to provide information on abundance, seasonality, and Plasmodium falciparum sporozoite infectivity of malaria vectors in Nchelenge, including islands. Methods Mosquitoes were collected in 192 CDC indoor light traps set in 56 households between January 2015 and January 2016. Morphological and molecular species identifications and P. falciparum circumsporoites by ELISA were performed. Mosquito counts and relative abundances from the islands and mainland were compared, and household factors associated with vector counts were determined. Results A total of 5888 anophelines were collected during the study. Of these, 5,704 were female Anopheles funestus sensu lato (s.l.) and 248 female An. gambiae s.l. The highest proportion of An. funestus (n = 4090) was from Chisenga Island and An. gambiae (n = 174) was from Kilwa Island. The highest estimated counts per trap for An. funestus s.l. were from Chisenga island, (89.9, p < 0.001) and from the dry season (78.6, p < 001). For An. gambiae the highest counts per trap were from Kilwa island (3.1, p < 0.001) and the rainy season (2.5, p = 0.007). The highest estimated annual entomological inoculation rate was from Chisenga Island with 91.62 ib/p/y followed by Kilwa Island with 29.77 ib/p/yr, and then Mainland with 19.97 ib/p/yr. Conclusions There was varied species abundance and malaria transmission risk across sites and seasons. The risk of malaria transmission was perennial and higher on the islands. The minimal impact of vector control efforts on the mainland was evident, but limited overall. Vector control intervention coverage with effective tools needs to be extended to the islands to effectively control malaria transmission in Nchelenge district

    Benchmarking insecticide resistance intensity bioassays for Anopheles malaria vector species against resistance phenotypes of known epidemiological significance

    No full text
    Abstract Background Insecticide use via indoor residual spraying (IRS) or treated nets is the primary method for controlling malaria vector populations. The incidence of insecticide resistance in vector populations is burgeoning globally making resistance management key to the design of effective malaria control and elimination strategies. Vector populations can be assessed for insecticide resistance using a binary (susceptible or resistant) classification based on the use of the standard WHO insecticide susceptibility assay for adult anopheline mosquitoes. However, the recent scaling up of vector control activities has necessitated a revision of the WHO bioassay protocol to include the production of information that not only diagnoses resistance but also gives information on the intensity of expression of resistance phenotypes detected. This revised protocol is expected to inform on the range of resistance phenotypes in a target vector population using discriminating/diagnostic insecticide concentrations (DC) as well as their potential operational significance using 5Ă— DC and 10Ă— DC assays. The aim of this project was to use the revised protocol to assess the intensity of pyrethroid resistance in a range of insecticide resistant Anopheles strains with known resistance mechanisms and for which there is evidence of operational significance in the field setting from which these colonies were derived. Methods Diagnostic concentration (DC) bioassays followed by 5Ă— DC and 10Ă— DC assays using the pyrethroid insecticides permethrin and deltamethrin were conducted according to the standard WHO bioassay method against pyrethroid resistant laboratory strains of Anopheles funestus, An. arabiensis and An. gambiae. Results Low to moderate resistance intensities were recorded for the An. arabiensis and An. gambiae strains while moderate to high intensities were recorded for the An. funestus strains. Conclusions It is evident that resistance intensity assays can add predictive value to the decision making process in vector control settings, although more so in an IRS setting and especially when bench-marked against resistance phenotypes of known operational significance

    Individual and Household Level Risk Factors Associated with Malaria in Nchelenge District, a Region with Perennial Transmission: A Serial Cross-Sectional Study from 2012 to 2015.

    No full text
    BACKGROUND:The scale-up of malaria control interventions has resulted in substantial declines in transmission in some but not all regions of sub-Saharan Africa. Understanding factors associated with persistent malaria transmission despite control efforts may guide targeted interventions to high-risk areas and populations. METHODS:Household malaria surveys were conducted in Nchelenge District, Luapula Province, in northern Zambia. Structures that appeared to be households were enumerated from a high-resolution satellite image and randomly sampled for enrollment. Households were enrolled into cross-sectional (single visit) or longitudinal (visits every other month) cohorts but analyses were restricted to cross-sectional visits and the first visit to longitudinal households. During study visits, a questionnaire was administered to adults and caretakers of children and a blood sample was collected for a malaria rapid diagnostic test (RDT) from all household residents. Characteristics associated with RDT positivity were analyzed using multi-level models. RESULTS:A total of 2,486 individuals residing within 742 households were enrolled between April 2012 and July 2015. Over this period, 51% of participants were RDT positive. Forty-three percent of all RDT positive individuals were between the ages of 5 and 17 years although this age group comprised only 30% of study participants. In a multivariable model, the odds being RDT positive were highest in 5-17 year olds and did not vary by season. Children 5-17 years of age had 8.83 higher odds of being RDT positive compared with those >18 years of age (95% CI: 6.13, 12.71); there was an interaction between age and report of symptoms, with an almost 50% increased odds of report of symptoms with decreasing age category (OR = 1.49; 95% CI 1.11, 2.00). CONCLUSIONS:Children and adolescents between the ages of 5 and 17 were at the highest risk of malaria infection throughout the year. School-based programs may be effective at targeting this high-risk group
    corecore