572 research outputs found

    Potentially fatal tricuspid valve aspergilloma detected after laparoscopic abdominal surgery

    Get PDF
    Fungal endocarditis accounts for 1.3-6% of all cases of infective endocarditis. The most common causative organism is Candida, followed by Aspergillus and other mould fungi. Aspergillus endocarditis is usually associated with high morbidity and mortality. Establishing a definitive and timely diagnosis remains difficult and there are many reports of undetected aspergillomas leading to fatalities in the perioperative period. We present a case report of preoperatively undiagnosed large mobile tricuspid valve aspergilloma obstructing the right ventricular inlet, diagnosed incidentally on the second postoperative day after laparoscopic pancreatic abscess drainage. The patient was successfully managed with emergency open-heart surgery and systemic antifungal agents in the postoperative period.Keywords: Infective endocarditis, aspergilloma, tricuspid valu

    Profit sharing as entry deterrence mechanism

    Get PDF
    In a right-to-manage framework, this paper analyzes the optimal choice of the pay scheme (profit sharing vs. fixed wage) in a unionized duopoly with potential market entry and decentralized bargaining. The paper shows that, depending on the institutional features, both pay systems can arise as equilibria in Nash strategies. Under duopoly with committed bargaining, the fixed wage is the Nash equilibrium; with flexible bargaining, an agreement between the incumbent firm and its union about profit sharing arises as Nash equilibrium, if the union is not too strong. A monopoly with threat of entry reinforces the selection of profit sharing as a deterrent mechanism.info:eu-repo/semantics/publishedVersio

    Synaptic requiem: a duet for Piccolo and Bassoon

    Full text link
    EMBO J (2013) 32:11, 954–969 doi:10.1038/emboj.2013.27; published online 02122013 Neurotransmission in the brain critically depends on the maintenance of synapses as well as on regulated synaptic protein turnover. How synaptic proteostasis is held in check has remained largely enigmatic. A new paper in The EMBO Journal reports that the active zone proteins Piccolo and Bassoon put a brake on presynaptic protein turnover by restraining the activity of the E3 ubiquitin ligase Siah1, thereby preventing neurodegeneration

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers

    Repeated Radionuclide therapy in metastatic paraganglioma leading to the highest reported cumulative activity of 131I-MIBG

    Get PDF
    131I-MIBG therapy for neuroendocrine tumours may be dose limited. The common range of applied cumulative activities is 10-40 GBq. We report the uneventful cumulative administration of 111 GBq (= 3 Ci) 131I-MIBG in a patient with metastatic paraganglioma. Ten courses of 131I-MIBG therapy were given within six years, accomplishing symptomatic, hormonal and tumour responses with no serious adverse effects. Chemotherapy with cisplatin/vinblastine/dacarbazine was the final treatment modality with temporary control of disease, but eventually the patient died of progression. The observed cumulative activity of 131I-MIBG represents the highest value reported to our knowledge, and even though 12.6 GBq of 90Y-DOTATOC were added intermediately, no associated relevant bone marrow, hepatic or other toxicity were observed. In an individual attempt to palliate metastatic disease high cumulative activity alone should not preclude the patient from repeat treatment

    Increased CCL2, CCL3, CCL5, and IL-1β cytokine concentration in piriform cortex, hippocampus, and neocortex after pilocarpine-induced seizures

    Get PDF
    BACKGROUND: Cytokines and chemokines play an important role in the neuroinflammatory response to an initial precipitating injury such as status epilepticus (SE). These signaling molecules participate in recruitment of immune cells, including brain macrophages (microglia), as well as neuroplastic changes, deterioration of damaged tissue, and epileptogenesis. This study describes the temporal and brain region pattern expression of numerous cytokines, including chemokines, after pilocarpine-induced seizures and discusses them in the larger context of their potential involvement in the changes that precede the development of epilepsy. FINDINGS: Adult rats received pilocarpine to induce SE and 90 min after seizure onset were treated with diazepam to mitigate seizures. Rats were subsequently deeply anesthetized and brain regions (hippocampus, piriform cortex, neocortex, and cerebellum) were freshly dissected at 2, 6, and 24 h or 5 days after seizures. Using methodology identical to our previous studies, simultaneous assay of multiple cytokines (CCL2, CCL3, CCL5, interleukin IL-1β, tumor necrosis factor (TNF-α)), and vascular endothelial growth factor (VEGF) was performed and compared to control rats. These proteins were selected based on existing evidence implicating them in the epileptogenic progression. A robust increase in CCL2 and CCL3 concentrations in the hippocampus, piriform cortex, and neocortex was observed at all time-points. The concentrations peaked with a ~200-fold increase 24 h after seizures and were two orders of magnitude greater than the significant increases observed for CCL5 and IL-1β in the same brain structures. TNF-α levels were altered in the piriform cortex and neocortex (24 h) and in the hippocampus (5 days) after SE. CONCLUSIONS: Pilocarpine-induced status epilepticus causes a rapid increase of multiple cytokines in limbic and neocortical regions. Understanding the precise spatial and temporal pattern of cytokines and chemokine changes could provide more viable therapeutic targets to reduce, reverse, or prevent the development of epilepsy following a precipitating injury

    Biofabrication of Anisotropic Gold Nanotriangles Using Extract of Endophytic Aspergillus clavatus as a Dual Functional Reductant and Stabilizer

    Get PDF
    Biosynthesis of metal and semiconductor nanoparticles using microorganisms has emerged as a more eco-friendly, simpler and reproducible alternative to the chemical synthesis, allowing the generation of rare forms such as nanotriangles and prisms. Here, we report the endophytic fungus Aspergillus clavatus, isolated from surface sterilized stem tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions produces a diverse mixture of intracellular gold nanoparticles (AuNPs), especially nanotriangles (GNT) in the size range from 20 to 35 nm. These structures (GNT) are of special interest since they possess distinct plasmonic features in the visible and IR regions, which equipped them with unique physical and optical properties exploitable in vital applications such as optics, electronics, catalysis and biomedicine. The reaction process was simple and convenient to handle and was monitored using ultraviolet–visible spectroscopy (UV–vis). The morphology and crystalline nature of the GNTs were determined from transmission electron microscopy (TEM), atomic force spectroscopy (AFM) and X-ray diffraction (XRD) spectroscopy. This proposed mechanistic principal might serve as a set of design rule for the synthesis of anisotropic nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications
    • …
    corecore