21 research outputs found

    WKB approximation for inflationary cosmological perturbations

    Get PDF
    A new method for predicting inflationary cosmological perturbations, based on the Wentzel-Kramers-Brillouin (WKB) approximation, is presented. A general expression for the WKB scalar and tensor power spectra is derived. The main advantage of the new scheme of approximation is that it is valid even if the slow-roll conditions are violated. The method is applied to power-law inflation, which allows a comparison with an exact result. It is demonstrated that the WKB approximation predicts the spectral indices exactly and the amplitude with an error lower than 10%, even in regimes far from scale-invariance. The new method of approximation is also applied to a situation where the slow-roll conditions hold. It is shown that the result obtained bears close resemblance with the standard slow-roll calculation. Finally, some possible improvements are briefly mentioned.Comment: 11 pages, 1 figure, RevTeX; minor changes, reference added (v2); typos corrected (v3

    Canonical Quantum Statistics of an Isolated Schwarzschild Black Hole with a Spectrum E_n = sigma sqrt{n} E_P

    Full text link
    Many authors - beginning with Bekenstein - have suggested that the energy levels E_n of a quantized isolated Schwarzschild black hole have the form E_n = sigma sqrt{n} E_P, n=1,2,..., sigma =O(1), with degeneracies g^n. In the present paper properties of a system with such a spectrum, considered as a quantum canonical ensemble, are discussed: Its canonical partition function Z(g,beta=1/kT), defined as a series for g<1, obeys the 1-dimensional heat equation. It may be extended to values g>1 by means of an integral representation which reveals a cut of Z(g,beta) in the complex g-plane from g=1 to infinity. Approaching the cut from above yields a real and an imaginary part of Z. Very surprisingly, it is the (explicitly known) imaginary part which gives the expected thermodynamical properties of Schwarzschild black holes: Identifying the internal energy U with the rest energy Mc^2 requires beta to have the value (in natural units) beta = 2M(lng/sigma^2)[1+O(1/M^2)], (4pi sigma^2=lng gives Hawking's beta_H), and yields the entropy S=[lng/(4pi sigma^2)] A/4 + O(lnA), where A is the area of the horizon.Comment: 14 pages, LaTeX A brief note added which refers to previous work where the imaginary part of the partition function is related to metastable states of the syste

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy

    Full text link
    The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As shown previously, for a neutral non-rotating black hole, such eigenvalues must be 2n2^{n}-fold degenerate if one constructs the black hole stationary states by means of a pair of creation operators subject to a specific algebra. We show that the algebra of these two building blocks exhibits U(2)U(1)×SU(2)U(2)\equiv U(1)\times SU(2) symmetry, where the area operator generates the U(1) symmetry. The three generators of the SU(2) symmetry represent a {\it global} quantum number (hyperspin) of the black hole, and we show that this hyperspin must be zero. As a result, the degeneracy of the nn-th area eigenvalue is reduced to 2n/n3/22^{n}/n^{3/2} for large nn, and therefore, the logarithmic correction term 3/2logA-3/2\log A should be added to the Bekenstein-Hawking entropy. We also provide a heuristic approach explaining this result, and an evidence for the existence of {\it two} building blocks.Comment: 15 pages, Revtex, to appear in Phys. Rev.

    The Coherent State Representation of Quantum Fluctuations in the Early Universe

    Get PDF
    Using the squeezed state formalism the coherent state representation of quantum fluctuations in an expanding universe is derived. It is shown that this provides a useful alternative to the Wigner function as a phase space representation of quantum fluctuations. The quantum to classical transition of fluctuations is naturally implemented by decohering the density matrix in this representation. The entropy of the decohered vacua is derived. It is shown that the decoherence process breaks the physical equivalence between vacua that differ by a coordinate dependent phase generated by a surface term in the Lagrangian. In particular, scale invariant power spectra are only obtained for a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with corrections and significant new calculation

    Brane cosmological perturbations

    Get PDF
    We address the question of cosmological perturbations in the context of brane cosmology, where our Universe is a three-brane where matter is confined, whereas gravity lives in a higher dimensional spacetime. The equations governing the bulk perturbations are computed in the case of a general warped universe. The results are then specialized to the case of a five-dimensional spacetime, scenario which has recently attracted a lot of attention. In this context, we decompose the perturbations into `scalar', `vector' and `tensor' modes, which are familiar in the standard theory of cosmological perturbations. The junction conditions, which relate the metric perturbations to the matter perturbations in the brane, are then computed.Comment: 14 pages, Latex; no figur

    Bulk Gravitational Field and Cosmological Perturbations on the Brane

    Get PDF
    We investigate the effect of the bulk gravitational field on the cosmological perturbations on a brane embedded in the 5D Anti-de Sitter (AdS) spacetime. The effective 4D Einstein equations for the scalar cosmological perturbations on the brane are obtained by solving the perturbations in the bulk. Then the behaviour of the corrections induced by the bulk gravitational field to the conventional 4D Einstein equation are determined. Two types of the corrections are found. First we investigate the corrections which become significant at scales below the AdS curvature scales and in the high energy universe with the energy density larger than the tension of the brane. The evolution equation for the perturbations on the brane is found and solved. Another type of the corrections is induced on the brane if we consider the bulk perturbations which do not contribute to the metric perturbations but do contribute to the matter perturbations. At low energies, they have imaginary mass m^2=-(2/3) \k^2 in the bulk where \k is the 3D comoving wave number of the perturbations. They diverge at the horizon of the AdS spacetime. The induced density perturbations behave as sound waves with sound velocity 1/31/\sqrt{3} in the low energy universe. At large scales, they are homogeneous perturbations that depend only on time and decay like radiation. They can be identified as the perturbations of the dark radiation. They produce isocurvature perturbations in the matter dominated era. Their effects can be observed as the shifts of the location and the height of the acoustic peak in the CMB spectrum.Comment: 35 pages, 1 figur

    Inflationary Perturbations: the Cosmological Schwinger Effect

    Full text link
    This pedagogical review aims at presenting the fundamental aspects of the theory of inflationary cosmological perturbations of quantum-mechanical origin. The analogy with the well-known Schwinger effect is discussed in detail and a systematic comparison of the two physical phenomena is carried out. In particular, it is demonstrated that the two underlying formalisms differ only up to an irrelevant canonical transformation. Hence, the basic physical mechanisms at play are similar in both cases and can be reduced to the quantization of a parametric oscillator leading to particle creation due to the interaction with a classical source: pair production in vacuum is therefore equivalent to the appearance of a growing mode for the cosmological fluctuations. The only difference lies in the nature of the source: an electric field in the case of the Schwinger effect and the gravitational field in the case of inflationary perturbations. Although, in the laboratory, it is notoriously difficult to produce an electric field such that pairs extracted from the vacuum can be detected, the gravitational field in the early universe can be strong enough to lead to observable effects that ultimately reveal themselves as temperature fluctuations in the Cosmic Microwave Background. Finally, the question of how quantum cosmological perturbations can be considered as classical is discussed at the end of the article.Comment: 49 pages, 6 figures, to appear in a LNP volume "Inflationary Cosmology

    Conformal Transformations in Cosmology of Modified Gravity: the Covariant Approach Perspective

    Get PDF
    The 1+3 covariant approach and the covariant gauge-invariant approach to perturbations are used to analyze in depth conformal transformations in cosmology. Such techniques allow us to obtain very interesting insights on the physical content of these transformations, when applied to non-standard gravity. The results obtained lead to a number of general conclusions on the change of some key quantities describing any two conformally related cosmological models. In particular, it is shown that the physics in the Einstein frame has characteristics which are completely different from those in the Jordan frame. Even if some of the geometrical properties of the cosmology are preserved (homogeneous and isotropic Universes are mapped into homogeneous and isotropic universes), it can happen that decelerating cosmologies are mapped into accelerated ones. Differences become even more pronounced when first-order perturbations are considered: from the 1+3 equations it is seen that first-order vector and tensor perturbations are left unchanged in their structure by the conformal transformation, but this cannot be said of the scalar perturbations, which include the matter density fluctuations. Behavior in the two frames of the growth rate, as well as other evolutionary features, like the presence or absence of oscillations, etc., appear to be different too. The results obtained are then explicitly interpreted and verified with the help of some clarifying examples based on f(R)f(R)-gravity cosmologies.Comment: 26 pages, 8 figure
    corecore