15 research outputs found

    Probabilistic damage stability for passenger ships—the p-factor illusion and reality

    Get PDF
    The paper complements an earlier publication by the authors addressing the probability of survival in the IMO framework for damage stability assessment, the s-factor. The focus here is on the probability of occurrence of a certain damage scenario (breach), conditional on its dimensions and location (centre and port or starboard side), the p-factor. Pertinent assumptions and limitations are explained, following its evolution for specific application to passenger ships. Attempts to provide analytical descriptions of the damage breach distributions as tetrahedra shapes positioned along the ship length whilst accounting for changes in ship geometry, structural arrangements, and subdivision for consumption by the wider profession has led to misconceptions and misunderstandings of what exactly the p-factor is in the context of probabilistic damage stability calculations. This is evidenced by the fact that the same original damage breach distributions, derived in Project HARDER, based on largely cargo ships with the age spread over the last three decades of the previous century, are still being used today for all ship types, including modern passenger ships. Filling this gap, a new database for passenger ships developed in the EC-funded Project FLARE, is briefly presented, leading to new damage breach distributions specifically for passenger ships. It is believed that this paper will throw considerable light in enhancing understanding on the p-factor, which has been cluttered with unnecessary complexity from the outset

    Challenges in machine learning based approaches for real-time anomaly detection in industrial control systems

    Get PDF
    Data-centric approaches are becoming increasingly common in the creation of defense mechanisms for critical infrastructure such as the electric power grid and water treatment plants. Such approaches often use well-known methods from machine learning and system identification, i.e., the Multi-Layer Perceptron, Convolutional Neural Network, and Deep Auto Encoders to create process anomaly detectors. Such detectors are then evaluated using data generated from an operational plant or a simulator; rarely is the assessment conducted in real time on a live plant. Regardless of the method to create an anomaly detector, and the data used for performance evaluation, there remain significant challenges that ought to be overcome before such detectors can be deployed with confidence in city-scale plants or large electric power grids. This position paper enumerates such challenges that the authors have faced when creating data-centric anomaly detectors and using them in a live plant

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Conception and evolution of the probabilistic methods for ship damage stability and flooding risk assessment

    No full text
    The paper provides a full description and explanation of the probabilistic method for ship damage stability assessment from its conception to date with focus on the probability of survival (s-factor), explaining pertinent assumptions and limitations and describing its evolution for specific application to passenger ships, using contemporary numerical and experimental tools and data. It also provides comparisons in results between statistical and direct approaches and makes recommendations on how these can be reconciled with better understanding of the implicit assumptions in the approach for use in ship design and operation. Evolution over the latter years to support pertinent regulatory developments relating to flooding risk (safety level) assessment as well as research in this direction with a focus on passenger ships, have created a new focus that combines all flooding hazards (collision, bottom and side groundings) to assess potential loss of life as a means of guiding further research and developments on damage stability for this ship type. The paper concludes by providing recommendations on the way forward for ship damage stability and flooding risk assessment

    High mobility, low voltage operating C-60 based n-type organic field effect transistors

    No full text
    AbstractWe report on C60 based organic field effect transistors (OFETs) that are well optimized for low voltage operation. By replacing commonly used dielectric layers by thin parylene films or by utilizing different organic materials like divinyltetramethyldisiloxane-bis(benzocyclo-butene) (BCB), low density polyethylene (PE) or adenine in combination with aluminum oxide (AlOx) to form a bilayer gate dielectric, it was possible to significantly increase the capacitance per unit area (up to two orders of magnitude). The assembly of metal-oxide and organic passivation layer combines the properties of the high dielectric constant of the metal oxide and the good organic–organic interface between semiconductor and insulator provided by a thin capping layer on top of the AlOx film. This results in OFETs that operate with voltages lower than 500mV, while exhibiting field effect mobilities exceeding 3cm2V−1s−1
    corecore