426 research outputs found
Spectrometric Monitoring of Atmospheric Carbon Tetrafluoride (CF4) Above the Jungfraujoch Station Since 1989: Evidence of Continued Increase But at a Slowing Rate
The long-term evolution of the vertical column abundance of carbon tetrafluoride (CF4) above the high-altitude Jungfraujoch station (Swiss Alps, 46.5 ° N, 8.0 ° E, 3580 ma.s.l.) has been derived from the spectrometric analysis of Fourier transform infrared solar spectra recorded at that site between 1989 and 2012. The investigation is based on a multi-microwindow approach, two encompassing pairs of absorption lines belonging to the R-branch of the strong ν3 band of CF4 centered at 1283 cm-1, and two additional ones to optimally account for weak but overlapping HNO3 interferences. The analysis reveals a steady accumulation of the very long-lived CF4 above the Jungfraujoch at mean rates of (1.38 ± 0.11) x 1013 molec cm-2 yr-1 from 1989 to 1997, and (0.98 +/- 0.02) x 1013 molec cm-2 yr-1 from 1998 to 2012, which correspond to linear growth rates of 1.71 ± 0.14 and 1.04 ± 0.02% yr-1 respectively referenced to 1989 and 1998. Related global CF4 anthropogenic emissions required to sustain these mean increases correspond to 15.8 ±1.3 and 11.1 ± 0.2 Gg yr-1 over the above specified time intervals. Findings reported here are compared and discussed with respect to relevant northern mid-latitude results obtained remotely from space and balloons as well as in situ at the ground, including new gas chromatography mass spectrometry measurements performed at the Jungfraujoch since 2010
A Keck/HIRES Study of Kinematics of the Cold Interstellar Medium in Dwarf Starburst Galaxies
We have obtained high resolution Echelle spectra (R = 30,000-50,000) of the
Na D absorption doublet (5890A, 5896A) for six dwarf starburst galaxies and two
more luminous starbursts: M82 and NGC 1614. The absorption features were
separated into multiple components and separated into stellar and interstellar
parts based on kinematics. We find that three of the dwarfs show outflows, with
an average blueshift of 27 km/s. This is small compared to the highest velocity
components in NGC 1614 and M82 (blueshifted by 150 km/s and 91 km/s,
respectively); these two brighter galaxies also show more complex absorption
profiles than the dwarfs. None of the outflow speeds clearly exceed the escape
velocity of the host galaxy. Sightlines in NGC 2363 and NGC4214 apparently
intersect expanding shells. We compare the shocked gas velocity (v_NaD) to the
ionized gas velocity (v_Halpha) and interpret the velocity difference as either
a trapped ionization front (NGC 4214) or a leaky HII region (NGC 2363). The
dwarfs show N(NaD) = 10^(11.8-13.7) cm^-2, while the Na D columns in M82 and
NGC 1614 are 10^13.7 cm^-2 and 10^14.0 cm^-2, respectively. The mass of
expelled gas is highly sensitive to outflow geometry, dust depletion, and
ionization fraction, but with a simple shell model we estimate neutral outflow
gas masses from ~10^6 M_solar to ~10^10 M_solar.Comment: 36 pages, including 9 figures. Accepted for publication in Astrophys.
DNM1 encephalopathy: A new disease of vesicle fission.
ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention
A Biopersistence Study following Exposure to Chrysotile Asbestos Alone or in Combination with Fine Particles
In designing a study to evaluate the inhalation biopersistence of a chrysotile asbestos that was used as a component of a joint-compound, a feasibility study was initiated to evaluate the short-term biopersistence of the chrysotile alone and of the chrysotile in combination witht the sanded reformulated joint-compound. Two groups of Wistar rats were exposed to either 7RF3 chrysotile (Group 2) or to 7RF3 chrysotile combined with aerosolized sanded joint-compound (Group 3). In addition, a control group was exposed to flltered-air. The chrysotile used in the Ready Mix joint compound is rapidly removed from the lung. The chrysotile alone exposure group had a clearance half-time of fibers L > 20 μm of 2.2 days; in the chrysotile plus sanded exposure group the clearance half-time of fibers L > 20 μm was 2.8 days. However, across all size ranges there was approximately an order of magnitude decrease in the mean number of fibers remaining in the lungs of Group 3 as compared to Group 2 despite similiar aerosol exposures. Histopathological examination showed that the chrysotile exposed lungs had the same appearance as the flltered-air controls. This study uniquely illustrates that additional concurrent exposure to an aerosol of the sanded joint-compound, with large numbers of fine-particles depositing in the lungs, accelerates the recruitment of macrophages, resulting in a tenfold decrease in the number of fibers remaining in the lung. The increased number of macrophages in the chrysotile/sanded joint exposure group was confirmed histologically, with this being the only exposure-related histological finding reported
Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3–2 and 4–3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3–2and 4–3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions – possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback
Environmental Factors Influence Language Development in Children with Autism Spectrum Disorders
International audienc
- …