9 research outputs found

    DNA immunization in combination with effective antiretroviral drug therapy controls viral rebound and prevents simian AIDS after treatment is discontinued

    Get PDF
    AbstractDNA immunization in conjunction with antiretroviral therapy was evaluated in SIV-infected rhesus macaques treated with [R]-9-[2-phosphonylmethoxypropyl]adenine (PMPA). Macaques were immunized monthly with DNA vaccines expressing either SIV gag/tat or SIV gag/tat and 19 CD8+ T cell epitopes during 7 months of therapy. Half the animals from each group were additionally immunized before infection. Only 60% of the animals (4 controls, 20 vaccinated) responded to PMPA (ART responders). All 4 ART responder controls demonstrated viral rebound or CD4 decline after PMPA was withdrawn. In contrast, 17 of 20 vaccinated ART responders contained viral rebound for over 7 months after PMPA was withdrawn. Viral control correlated with stable CD4 counts, higher lymphoproliferation and an increase in the magnitude and breadth of the CD8+ T cell response. Immunizing before infection or with multi-epitopes enhanced these effects. These results demonstrate that DNA immunization during antiretroviral therapy may be an effective strategy to treat HIV infection

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios
    corecore