152 research outputs found

    Development of Reaction Kinetics Model for the Production of Synthesis Gas from Dry Methane Reforming

    Get PDF
    The energy supply systems dependent on fossils and municipal solid waste (MSW) materials are primarily responsible for releasing greenhouse (GHG) gases and their related environmental hazards. The increasing amount of methane (CH4) and carbon dioxide (CO2) is the scientific community's main concern in this context. Reduction in the emission amount of both gases combined with the conversion technologies that would convert these total threat gases (CO2 and CH4) into valuable feedstocks will significantly lower their hazardous impact on climate change. The conversion technique known as dry methane reforming (DMR) utilizes CO2 and CH4 to produce a combustible gas mixture (CO+H2), popularly known as synthesis gas/or syngas. Therefore, this research study aims to explore and enlighten the characteristics of the DMR mechanism. The conversion behaviour of CO2 and CH4 was studied with modelling and simulation of the DMR process using MATLAB. The results showed that inlet gas flow has a significant impact on the reactions. In contrast, the inlet molar composition ratio of the reactions was found to have no substantial effect on the mechanism of DMR. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals

    Get PDF
    Nuclear medicine techniques have a great deal of advantage of using gamma radiation emitter radiolabeled compounds to diagnose the long list of infectious and malignant disorders in human systems. The gamma emitter radionuclide-labeled compounds are associated with single photon emission computed tomography (SPECT) camera. SPECT camera mainly offers the detection and analysis of gamma rays origin to furnish the imaging of defective organs in the body. There are about 85% radiopharmaceuticals in clinical practice which are being detected by SPECT camera. The following chapter is an update about the SPECT radiopharmaceuticals that were developed and tried for infection and cancer diagnosis

    Potential of biomass for bioenergy in Pakistan based on present case and future perspectives

    Get PDF
    Authors have no conflict of interest and would like to acknowledge the National University of Sciences&Technology (NUST), Pakistan.Peer reviewedPostprin

    In silico mutation analysis of human beta globin gene in sickle cell disease patients

    Get PDF
    Background: Sickle cell disease is an inherited blood disorder that affects red blood cells. People with sickle cell conditions make a different form of hemoglobin a called hemoglobin S. Sickle cell conditions are inherited from parents in much the same way as blood type, hair color and texture, eye color and other physical traits. Sickle cell disease occurs due to a single mutation on the b-globin gene, namely, a substitution of glutamic acid for valine at position 6 of the b chain. Several mutations in HBB gene can cause sickle cell disease. Abnormal versions of beta-globin can distort red blood cells into a sickle shape. The sickle-shaped red blood cells die prematurely, which can lead to anemia. The study is focused on analysis of HBB gene with its different variants, Evolutionary pathways and protein domains by using various bioinformatics tools.Methods: The study is focused on analysis of HBB gene with its different variants, Evolutionary pathways and protein domains by using various bioinformatics tools.Results: Sickle cell disease occurs due to a single mutation on the b-globin gene, namely, a substitution of glutamic acid for valine at position 6 of the b chain. Several mutations in HBB gene can cause sickle cell disease. Abnormal versions of beta-globin can distort red blood cells into a sickle shape. Comparative study shown 38 different genes with little genetic variation among different species.Conclusion: Studies suggested that there is need to maintain a primary prevention program to detect sickle cell disease at earlier stages despite having a large high risk. Preventive diagnosis and follow-up would reduce infant mortality by preventing the development of severe anemia as well as dangerous complications. In short, sickle cell disease surveillance would avert loss of life, measured as the number of years lost due to ill-health, disability or early death.

    Thermodynamic performance analysis of hydrofluoroolefins (HFO) refrigerants in commercial air-conditioning systems for sustainable environment

    Get PDF
    Global warming is one of most severe environmental concerns that our planet is facing today. One of its causes is the previous generation of refrigerants that, upon release, remain in the atmosphere for longer periods and contribute towards global warming. This issue could potentially be solved by replacing the previous generation's high global warming potential (GWP) refrigerants with environmentally friendly refrigerants. This scenario requires an analysis of new refrigerants for a comparison of the thermodynamic properties of the previously used refrigerants. In the present research, a numerical study was conducted to analyze the thermodynamic performance of specifically low GWP hydrofluoroolefens (HFO) refrigerants for an actual vapor compression refrigeration cycle (VCRC) with a constant degree of 3 K superheat. The output parameters included the refrigeration effect, compressor work input, the coefficient of performance (COP), and the volumetric refrigeration capacity (VRC), all of which were calculated by varying the condenser pressure from 6 to 12 bars and vapor pressure from 0.7 to 1.9 bars. Results showed that R1234ze(Z) clearly possessed the desired thermodynamic performance. The drop in refrigeration effect for R1234ze(Z) was merely 14.6% less than that of R134a at a 12 bar condenser pressure; this was minimum drop among candidate refrigerants. The drop in the COP was the minimum for R1234ze(Z)-5.1% less than that of R134a at a 9 bar condenser pressure and 4.7% less than that of R134a at a 1.9 bar evaporator pressure, whereas the COP values of the other refrigerants dropped more drastically at higher condenser pressures. R1234ze(Z) possessed favorable thermodynamic characteristics, with a GWP of 7, and it can serve as an alternative refrigerant for refrigeration systems for a sustainable environment

    Usability Evaluation of Online Educational Applications in COVID-19

    Get PDF
    COVID-19 is a pandemic faced by almost every country in the world, this has resulted in health crisis. Due to COVID-19, all the countries around the world have decided to close all educational institutes to prevent this pandemic. Educational institutes have taken every possible measure to minimize the impact of the closure of schools and introduce the concept of an online education system which is not only a massive shock for parents but it also affects the children's learning process and social life. The educational applications (Apps) are very important, because they offer more opportunities for development and growth to society. In this pandemic situation, educational Apps like Zoom, HEC LMS, Google Classroom, and Skype, etc. are the need of the hour when everything goes online. In this paper, the usability features of online educational Apps are thoroughly discussed including the effectiveness and usability for students. Using the results obtained from the survey, this paper observes the student's perspective of usefulness of online educational Apps in student’s learning process of different age groups. It also analyzes the easiness for students to understand, interact and use these Apps

    Antioxidants: Natural Antibiotics

    Get PDF
    The aim of this current piece of writing is to draw the attention of readers and researchers toward the natural antioxidants that can take the place of synthetic antibiotics to avoid bacterial resistance and gastrotoxicity/nephrotoxicity. Antioxidants such as polyphenols, vitamins, and carotenoids are the organic compounds mainly extracted from natural sources and dominantly involved in boosting the defense system of organisms. The main public health-related issue over the globe is ever-growing bacterial resistance to synthetic antibiotics, which is being continuously reported during the last decade. Further, the pipeline of the development of new synthetic antibacterial agents to replace the resistant antibiotics in clinical set-up is gradually drying up. This scenario originated the concept to revive the interest toward natural antibacterial products due to their chemical diversity, which provide important therapeutic effect and make the microbes unable to copy them for creating resistance. Natural products, especially polyphenols had been seen in antioxidant, antibacterial, anticancer, anti-inflammation, and antiviral activities with encouraging results. In this chapter, we will focus over the role of natural antioxidants as antibacterial agents
    corecore