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1 Abstract

2 In this study, an integrated framework of artificial neural networks (ANNs) and metaheuristic 

3 algorithms have been developed for the prediction of biochar yield using biomass characteristics 

4 and pyrolysis process conditions. Comparative analysis of six different metaheuristic algorithms 

5 was performed to optimize the ANN architecture and select important features. The results 

6 suggested that the ANN model coupled with the Rao-2 algorithm outperformed (R2~0.93, 

7 RMSE~1.74%) all other models. Furthermore, the detailed information behind the models was 

8 acquired, identifying the most influencing factors as follows: pyrolysis temperature (56%), 

9 residence time (23%), and heating rate (8%). The partial dependence plot analysis revealed how 

10 each influencing factor affected the target variable. Finally, an easy-to-use software tool for 

11 predicting biochar yield was built using the ANN-Rao-2 model. This study demonstrates huge 

12 potential that machine learning presents in predictive modelling of complex pyrolysis processes, 

13 and reduces the time-consuming and expensive experimental work for estimating the biochar 

14 yield.
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1 1. Introduction

2 Diminishing fossil fuel reserves, environmental challenges, and an elevation in the market price 

3 of fossil fuels have accelerated the thrust of scientists and researchers to investigate commercial 

4 and environmental-friendly energy resources (Kang et al., 2020; Su et al., 2022). In this regard, 

5 biomass has received considerable interest as one of the most abundant and promising renewable 

6 raw materials that could serve as a potential alternative to fossil fuels. (Iaccarino et al., 2021). 

7 Among various conversion pathways of biomass, the thermochemical conversion process has 

8 been considered a promising technology for producing high value-added products from biomass 

9 due to the versatility in feedstock processing, lower reaction time, low capital cost, range of 

10 products, high process yield, CO2 neutrality, and product up-gradation (Won et al., 2022). 

11 Pyrolysis, a type of thermochemical conversion process, is a widely used process for converting 

12 solid biomass into solid (biochar), liquid (bio-oil), and gaseous (pyrolytic gas) products in an 

13 oxygen-free environment (Abnisa et al., 2013; Khuenkaeo & Tippayawong, 2020). Among these 

14 pyrolysis products, biochar has received much attention due to its unique properties such as high 

15 surface area and surface functional groups (Wang & Wang, 2019; Weber & Quicker, 2018). It 

16 has a carbon-rich microporous structure that has been used in various applications such as carbon 

17 sequestration in soil (Windeatt et al., 2014), pollutant sorption (Sizmur et al., 2017), pollution 

18 remediation (Wang et al., 2019), and carbon-based products (Zhou et al., 2021). However, the 

19 properties and productivity of biochar vary depending on the type of biomass and pyrolysis 

20 conditions. As a result, researchers have investigated the biochar production process utilizing 

21 diverse biomass feedstock and developed ways for maximizing biochar yield, which could 

22 eventually play a substantial role in biomass exploitation (Mani et al., 2011; Panwar et al., 2019).
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1 The biochar yield mainly depends on characteristics of biomass feedstock and pyrolysis process 

2 parameters (Hasan et al., 2017; Şensöz & Angin, 2008). As the most generally used approaches, 

3 proximate analysis (fixed carbon (FC), volatile matter (VM), moisture contents (MC), ash) and 

4 ultimate analysis (carbon (C), hydrogen (H), nitrogen (N), oxygen (O) contents) could reflect the 

5 diversity and internal attributes of biomass (Ding et al., 2017). Meanwhile, the structural 

6 information (cellulose, hemicellulose, lignin, and some extractive) of biomass feedstock and 

7 pyrolysis process conditions such as highest treatment temperature (HTT), heating rate (HR), 

8 residence time (RT), particle size (PS), and sweep gas flow rate were assumed to be the most 

9 critical parameters in the pyrolysis process (Chen et al., 2015). Since then, significant research 

10 has focused on the impact of the aforementioned parameters on biochar yield. For instance, it 

11 was found by Demirbas (Demirbas, 2004) that pyrolysis of different biomass feedstock (olive 

12 husk, corncob, and tea waste) under similar experimental conditions resulted in different biochar 

13 yields. The olive husk with the highest lignin content produced the most biochar, whereas the 

14 corncob with the lowest lignin content produced the least. Moreover, the presence of water or 

15 moisture in the biomass feedstock negatively impacts the biochar yield. The pyrolysis of wood 

16 with 5% moisture content resulted in a higher biochar yield than the wood biomass with 20% 

17 moisture content (Fang et al., 2014).  It was discovered that the greater the concentration of 

18 oxygen in the biomass, the greater the reactivity (Gani & Naruse, 2007). The higher biochar 

19 production requires a low temperature and a lengthy vapor residence time (Encinar et al., 1996). 

20 Furthermore, the increase in pyrolysis temperature from 400 to 700 °C has reduced biochar yield 

21 by 10% for hazelnut shells (Pu & Pu, 1999) and 17% for sesame stalk (Ateş et al., 2004). The 

22 effect of particle size of various biomass wastes (olive husk, corncob) on the biochar yield has 

23 been reported by Demirbas (Demirbas, 2004). It was reported that changing the particle size of 
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1 olive husk and corncob from 0.5 mm to 2.2 mm enhanced the biochar yield by 16.2% and 10.9%, 

2 respectively. This is because as particle size increases, the distance between the surface of the 

3 input biomass and its core increases, slowing the fast heat flow from the hot to cold end. The 

4 char yield is favored by this temperature gradient (Encinar et al., 2000).

5 Although numerous research studies have been reported for investigating the impact of various 

6 parameters on biochar yield, identifying the suitable and optimum parameters for biochar 

7 production is a difficult task. Traditional approaches of exploring biochar yield and its 

8 interaction with inducing factors need complicated experimentation, which is time-consuming, 

9 costly, and challenging to carry out. To productively examine the total impact of feedstock 

10 attributes and pyrolysis process conditions on biochar yield, it is important to analyze the process 

11 of biomass pyrolysis with consolidated contemplations of feedstock characteristics and pyrolysis 

12 conditions implementing emerging techniques such as big data, artificial intelligence, and 

13 machine learning approaches.

14 Fortunately, machine learning algorithms can predict and evaluate relationships between input 

15 and output data (Ahmad et al., 2021; Khan et al., 2021). In this regard, various machine learning-

16 based studies have been conducted in the last decade for forecasting biochar yield (Aziz et al., 

17 2017; Cao et al., 2016; Ewees & Elaziz, 2020; Pathy et al., 2020; Zhu et al., 2019). For instance, 

18 Cao et al., (Cao et al., 2016) have successfully developed a least square support vector machine 

19 model (coefficient of determination (R2)~0.96) to predict biochar yield using cattle manure as a 

20 feedstock. Additionally, an adaptive neuro-fuzzy inference system (ANFIS) coupled with the 

21 optimization method was proposed by Aziz et al., (Aziz et al., 2017) for biochar yield prediction 

22 using cattle manure and has achieved good performance (R2=0.98). Furthermore, Zhu et al., (Zhu 

23 et al., 2019) have successfully employed a random forest model for the biochar yield (R2=0.85) 
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1 and carbon content (R2=0.85) prediction using the composition of lignocellulosic biomass and 

2 pyrolysis conditions. Pathy et al., (Pathy et al., 2020) have used the extreme gradient boosting 

3 model for the prediction of biochar based on algal feedstock with (R2=0.84). Ewees and Elaziz, 

4 (Ewees & Elaziz, 2020) have developed an improved ANFIS model combined with the grey 

5 wolf optimization method for estimating the biochar produced from manure pyrolysis with 

6 (R2=0.98). 

7 Although considerable research has been performed on the application of machine learning in 

8 biochar yield prediction, most of these studies considered only one type of biomass feedstock 

9 (mostly cattle manure), a very few influencing parameters, and a limited dataset. Additionally, 

10 various features or parameters are involved in biomass pyrolysis for the production of biochar 

11 and the identification of the most influential features is critical. The selection of important 

12 features not only saves time and resources but could sometimes enhance the product yield as 

13 well. Various methods are used for the selection of important features including filter, wrapper, 

14 and embedded methods (Chandrashekar & Sahin, 2014). These methods help identify the best 

15 features that could not only help the ML models to train fast but also boost the accuracy of the 

16 model and reduce the overfitting. Among these, the wrapper method trains the real ML algorithm 

17 on each set of features to select the most significant features. It saves time and enhances results 

18 by utilizing cross-validation performance (Wah et al., 2018). Motivated by this, a genetic 

19 algorithm-based approach has been successfully developed in our previous study for the 

20 selection of features for bio-oil yield prediction (Ullah et al., 2021). One of the motivations of 

21 this study was to extend and develop a detailed framework for biochar yield prediction.  

22 However, the study by Ullah et al. (2021) was limited to the analysis of single optimization 

23 method (genetic algorithm (GA)) which makes it hard to evaluate and generalize the 
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1 performance of optimization methods. Besides GA, the comparative analysis of various other 

2 metaheuristic optimization techniques including grey wolf optimization (GWO), Rao algorithms 

3 (RA), particle swarm optimization (PSO), and sine cosine algorithm (SCA) should be 

4 implemented not only the feature selection but also for the ANN architecture selection to identify 

5 the best algorithm for biochar yield prediction. Moreover, the compilation of robust dataset 

6 containing detailed information on pyrolysis process conditions, proximate analysis, ultimate 

7 analysis, and structural information (cellulose, hemicellulose, and lignin contents) was also 

8 lacking in most of the studies.

9 Motivated by the above-mentioned gaps, ANN-based models coupled with various metaheuristic 

10 optimization algorithms have been developed for predicting biochar yield utilizing biomass 

11 feedstock characteristics and pyrolysis conditions. we have tried our best to include most of the 

12 influential parameters in our study to investigate the impact of various biomass feedstock and 

13 input parameters on the biochar yield. The input parameters considered in this study include 

14 ultimate analysis, proximate analysis, biomass structural information, and pyrolysis conditions. 

15 In addition, various metaheuristic optimization methods (GWO, PSO, RA-1, RA-2, GA, and 

16 SCA) have been employed for features selection as well as for the selection of ANN architecture 

17 (number of hidden layers and number of associated neurons), which was the key novelty of 

18 current study. The reason for employing comparative analysis of multiple optimization methods 

19 was to identify the best method that selects the best input features and ANN architecture which 

20 eventually boosts the prediction performance of the ANN model. Furthermore, to examine the 

21 impact of each input parameter on the biochar yield, a partial dependence plot analysis was 

22 carried out.  Lastly, a graphical user interface (GUI) based software package was developed for 

23 the prediction of biochar yield. 
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1 2. Materials and methods

2 2.1. Data collection and pre-processing

3 The development of a robust dataset specific to the application is mandatory before developing 

4 the ML model. In this study, various biomass feedstock for the biochar pyrolysis process was 

5 considered including lignocellulosic biomass, herbaceous plants, sewage sludge, and animal 

6 manure. The biochar yield is primarily determined by the properties of the biomass feedstock 

7 and the pyrolysis process parameters. Proximate and ultimate analyses, as the most commonly 

8 used approaches, could reflect the diversity and intrinsic attributes of biomass. Meanwhile, 

9 biomass feedstock structural information and pyrolysis process conditions were considered to be 

10 the most essential parameters in the pyrolysis process (Hasan et al., 2017; Şensöz & Angin, 

11 2008). Therefore, the proximate analysis (MC, FC, VM, and ash content), ultimate analysis (C, 

12 H, N, and O content), and structural analysis (cellulose, hemicellulose, and lignin) of the biomass 

13 feedstock, as well as the pyrolysis conditions (HTT, HR, RT, and PS), were selected as input 

14 parameters. While the corresponding biochar yield was considered as output or target variable. 

15 For the data collection, a systematic literature review was conducted in the citation databases of 

16 Google Scholar, Web of Science, and Science Direct using multiple search terms such as 

17 machine learning, biochar, pyrolysis products, lignocellulosic biomass, sewage sludge, and 

18 animal wastes, among others. Following the retrieval of relevant articles, data extraction and 

19 compilation was performed to develop and evaluate machine learning-based predictive models. 

20 A total of 402 data points were extracted from 89 articles in the timeframe ranging from 2004-

21 2021 using 15 different types of lignocellulosic biomass, 10 different types of herbaceous plants, 

22 and 7 other types of feedstock (see supplementary materials). The feedstock was normally dried 
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1 and crushed into smaller-size particles before being analyzed for feedstock structural information 

2 and proximate and ultimate analyses. In the studies, the biochar yield was reported on a dry ash-

3 free basis. The pyrolysis experimentations were performed at varying HR, HTT, and RT values. 

4 Finally, the biochar was gathered so that the yield could be calculated. Following data collection, 

5 the data was pre-processed to normalize all input and output units. Except for variables that were 

6 deleted owing to unresolved missing data, each set of data contained valid values for all 

7 variables.

8 2.2. Employed meta-heuristic algorithms

9 i. Grey-wolf optimization (GWO)

10 GWO was inspired by the social hierarchy and the hunting technique of grey wolves. It mimics 

11 the leadership and hunting mechanism of grey wolves. In the mathematical model, the best 

12 solution is designated as alpha (α), the second-best as beta (β), and the third-best as delta (δ). The 

13 remaining potential solutions are considered to be omegas (ω). To replicate hunting behavior, 

14 three steps are used: (i) encircling, (ii) tracking, and (iii) assaulting the prey. The equation for 

15 encircling the prey is given in the equation (Mirjalili et al., 2014).

16 𝐷(𝑡 + 1) = |𝐴.𝑋𝑝(𝑡 + 1) ― 𝑋(𝑡 + 1)|

17 𝑋(𝑡 + 1) = |𝑋𝑝(𝑡 + 1) ― 𝐹.𝐷(𝑡 + 1)|

18 where D is the distance between the wolf X and the prey Xp, while F and A are the coefficient 

19 vectors.

20 𝐹 = 2𝑓.𝑟1 ― 𝑓

21 𝐴 = 2𝑟
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1 where r1 and r2 are random vectors in the interval [0, 1], and the value of parameter a is reduced 

2 from 2–0 in linear form with each iteration.

3 The location of any wolf X in the present population can be updated based on the positions of ,  𝛼

4 and .𝛽, 𝛿

5 𝑋 =
𝑋1 + 𝑋2 + 𝑋3

3

6 , , 𝑋1 = |𝑋𝛼 ― 𝐴.𝐷𝛼|   𝑋2 = |𝑋𝛽 ― 𝐴.𝐷𝛽|  𝑋3 = |𝑋𝛿 ― 𝐴.𝐷𝛿|

7 , , 𝐷𝛼 = |𝐶2.𝑋𝛼 ― 𝑋|   𝐷𝛽 = |𝐶2.𝑋𝛽 ― 𝑋|  𝐷𝛿 = |𝐶3.𝑋𝛿 ― 𝑋|

8

9 ii. Rao algorithms (RA)

10 Ravipudi Venkata Rao introduced metaphor-free optimization methods named Rao algorithms in 

11 2020. It employs both the best and the worst alternatives in each generation, as well as random 

12 encounters among the possible solutions, to quickly locate an optimum solution. They require 

13 two common parameters: population size and a maximum number of evaluations that can be 

14 readily adjusted. Rao algorithms (Rao-1 and Rao-2) employ the three equations listed below 

15 (Rao, 2020).

16 𝑋′𝑗,𝑘,𝑖 = 𝑋 
𝑗,𝑘,𝑖 + 𝑟1,𝑗,𝑖(𝑋𝑗,𝑏𝑒𝑠𝑡,𝑖 ― 𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖)

17 𝑋′𝑗,𝑘,𝑖 = 𝑋 
𝑗,𝑘,𝑖 + 𝑟1,𝑗,𝑖(𝑋𝑗,𝑏𝑒𝑠𝑡,𝑖 ― 𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖) + 𝑟2,𝑗,𝑖(|𝑋𝑗,𝑘,𝑖 𝑜𝑟 𝑋𝑗,𝑙,𝑖| ―  |𝑋𝑗,𝑙,𝑖 𝑜𝑟 𝑋𝑗,𝑘,𝑖|) 

18 Where and signify the best and worst choices as the value of parameter j during 𝑋𝑗,𝑏𝑒𝑠𝑡,𝑖 𝑋𝑗,𝑤𝑜𝑟𝑠𝑡,𝑖  

19 the ith iteration, respectively.   is the updated value following the equation, and and 𝑋′𝑗,𝑘,𝑖 𝑟1,𝑗,𝑖 
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1 are produced at random in the range [0,1] for the jth variable during the ith iteration. The 𝑟2,𝑗,𝑖 

2 phrase  refers to the comparison of a candidate solution k to another candidate l |𝑋𝑗,𝑘,𝑖 𝑜𝑟 𝑋𝑗,𝑙,𝑖|

3 chosen at random the available candidates in the population. 

4 iii. Sine Cosine algorithm (SCA)

5 SCA was inspired by the principles of trigonometric sine and cosine functions. It updates 

6 individual locations toward the ideal solution using the principle of trigonometric sine and cosine 

7 functions. The solutions in SCA are updated using the following equations (Mirjalili, 2016):

8 𝑋𝑡 + 1
𝑖 = 𝑋𝑡 

𝑖 + 𝑟1 ∗ 𝑆𝑖𝑛(𝑟2) ∗  |𝑟3𝑃𝑡 
𝑖 ― 𝑋𝑡 

𝑖 |) 

9 𝑋𝑡 + 1
𝑖 = 𝑋𝑡 

𝑖𝑗 + 𝑟1 ∗ 𝐶𝑜𝑠(𝑟2) ∗  |𝑟3𝑃𝑡 
𝑖 ― 𝑋𝑡 

𝑖𝑖|) 

10 𝑟1 =  𝑎 ― 𝑎 ∗
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

11 where is the position of the existing solution, r1/r2/r3 are random numbers, Pi is the position 𝑋𝑡 
𝑖

12 of the destination point, a is a constant parameter and its value is taken 2 in the present study. 

13 While iter represents the present iteration number and itermax shows the total number of 

14 iterations (taken 100 in the present study). 

15 iv. Genetic algorithm (GA)

16 GA replicates the process of biological evolution and is based on natural selection and genetic 

17 inheritance. GA employs a fitness (objective) function to measure the fitness of each member of 

18 the population. Following that, GA operators (selection, crossover, mutation) are utilized to 

19 generate subsequent populations (Katoch et al., 2021). To fix poor solutions, the best alternatives 

20 are chosen at random using a selection technique. The crossover produces a pair of offspring 
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1 having features from both parents (members), to improve fitness values. The mutation is the 

2 appearance of a random change in the value of a string position with the minimum possible 

3 probability. Its objective is to keep critical information contained inside strings from being lost 

4 prematurely. The above technique is continued until an optimal solution(s) is (are) identified or 

5 the relative difference between solutions is less than a given limit is reached. The parametric 

6 setting in the present study is as follows; elite count = 2, population type = bilstring, crossover-

7 type = crossover arithmetic, mutation type = mutation uniform, selection type = selection 

8 roulette, mutation probability = 0.1, and crossover probability = 0.8 (Ewees & Elaziz, 2020). 

9 v. Particle swarm optimization (PSO)

10 PSO was inspired by the cooperative behavior of some animals, such as bird flocks or fish 

11 schools. Each solution in PSO is referred to as a "bird" in the search space, which is termed as a 

12 "particle." A swarm of these particles traverses the search space in search of the optimal location. 

13 In an N-dimensional space problem, the particle carries the position vector as well as the velocity 

14 vector. The location vector is denoted by Xi = (xi1, xi2, xi3, .... xiN), whereas the velocity vector 

15 is denoted by Vi=(vi1,vi2,...,viN). where i represents the ith particle and N represents the 

16 problem dimension or the number of unknown variables. The position and velocity of the 

17 particles are updated using the two equations below (Clerc, 2010).

18 𝑉𝑘
𝑖 = 𝑤.𝑉𝑘

𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑘
𝑖  ―  𝑋𝑘

𝑖 ) +  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑘 
 
 ―  𝑋𝑘

𝑖 )

19 𝑋𝑘 + 1
𝑖 =   𝑋𝑘

𝑖 +  𝑉𝑘 + 1
𝑖

20 where 'pbest' represents the ith particle's personal best position, and 'gbest' represents the swarm's 

21 best-so-far position search. The inertia weight w represents the influence of the prior velocity 
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1 vector on the new vector. The velocity in all dimensions is given an upper restriction Vmax. In 

2 this study, the parametric setting was as follows; minimum adopted neighborhood = 0.25, self-

3 adjustment weight = 1.49, social adjustment weight = 1.49, and inertia weight = 1 (Ewees & 

4 Elaziz, 2020).

5 2.3. Artificial neural networks (ANN)

6 ANN possess the self-learning ability; they may enhance their performance as additional 

7 information becomes available. They may acquire and store knowledge (information-based) and 

8 can be described as a group of processing units depicted by artificial neurons, unified by huge 

9 interconnections (artificial synapses), and executed by synaptic weights vectors and matrices. 

10 ANN builds a framework by connecting mathematical ‘‘neurons," or ‘‘nodes," to simulate 

11 complicated processes. Generally, ANN contains input, hidden, and output layers. Each neuron 

12 in the hidden layer and output layer has a linear or nonlinear activation function. The most used 

13 activation functions are sigmoid, log sigmoid, and purlin (Abiodun et al., 2018). 

14   = f ( )𝑌𝑖 ∑𝑛
𝑗 = 1𝑋𝑗 𝑊𝑖𝑗

15 Where X represents the input features, W represents the weight associated with the respective input 

16 feature. Each input parameter is multiplied with its weight and is passed through the summing 

17 junction to give the output Y. In this study, all the ANN models were developed using MATLAB 

18 R2021b software 

19 2.4. Performance evaluation measures

20 The root means squared error (RMSE) and coefficient of determination (R2) criteria were used to 

21 assess the performance of all six artificial neural network (ANN) based models (Zhang et al., 
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1 2019).

2                   R2 
 = 1 ―  

∑n
i = 1(Yexp

i ―  Yi)
2

∑n
i (Yexp

i ―  Yexp
avg)2

3 RMSE =
1
n 

n

∑
i

(Yexp
i ―  Yi)

2

4 Where n stands for the number of test samples, stands for actual value, and denotes the Yexp
i Yi 

5 predicted value. represents the mean value of actual and predicted values.Yexp
avg 

6 3. Results and discussion

7 3.1. Statistical analysis of the dataset

8 Boxplot showed the data distribution and the presence of outliers in the collected dataset. The 

9 data was pre-processed to handle the outlier and improve the quality of the dataset. The in-built 

10 functions of MATLAB R2021b software were used for handling missing values and outliers in 

11 the data. The boxplot analysis in Figure 1 shows the visualization of the data distribution for 

12 various features including biomass feedstock composition and pyrolysis conditions. The C and O 

13 in the biomass feedstock varied in the range of 29.42% to 64.23 and 18.47% to 57.2%, 

14 respectively. The distribution of H and N fell within the accepted norms of 4.28–11.6 % and 0–

15 8.7 %, respectively. The weight fraction of lignin contents ranged from 1.96% to 50.6%, whereas 

16 the weight fractions of cellulose and hemicellulose ranged from 2.4% to 60.57% and 3.3% to 

17 52.75%, respectively. The FC, VM, MC, and ash contents ranged from 0-72.9%, 19.4-86.6%, 0-

18 70.16%, and 0.2-44.61%, respectively. The VM fluctuated the most due to the presence of 

19 diverse biomass feedstock. Moreover, the sewage sludge contains numerous inorganics, its ash 

20 content was significant (Manara & Zabaniotou, 2012). 
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1 The pyrolysis process parameters including HR, PS, HTT, and RT ranged from 3.5-232.5 

2 oC/min, 0.15-15 mm, 350-927 oC, 0.5-120 min, respectively; given the fact that we considered 

3 many cases of pyrolysis from various articles. The biochar yield ranged from 11.7% to 56%. 

4 These data points revealed the possibility of optimizing the feedstock and operating parameters 

5 of the pyrolysis process to attain a high biochar yield. It is worth noting that the wide-ranging 

6 range of values for each variable showed that the compiled dataset will allow the model to learn 

7 from various data, hence contributing to generalization.

8 3.2. Proposed frameworks for features and ANN architecture selection

9 Various metaheuristic optimization algorithms including GWO, RA-1, RA-2, SCA, PSO, and 

10 GA were used in this study to select the most influential features as well as the ANN 

11 architecture. Figure 2 depicts the schematic framework used for the execution of these 

12 algorithms coupled with the ANN model. The number of iterations and population size was kept 

13 constant for all methods to evaluate the relative performance and to conduct a fair comparison of 

14 various optimization methods (population size = 25, maximum iterations = 100). The working 

15 flow of the proposed framework is given as follows;

16  The dataset comprising of 402 data points was first distributed into 80% training and 20% 

17 testing data. 

18  The population size of 25 was initialized  

19  The ANN model was developed using generated set of solutions 

20  The fitness function was evaluated (RMSE in both cases)

21  If the number of iterations exceeded the limit, the loop was terminated. Otherwise, it 

22 would go for the next iteration to generate the new population
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1  Once the loop was terminated, the best input features and ANN architecture were selected 

2 by the metaheuristic optimization methods based on the lowest RMSE value. 

3 To begin, the GWO method was used to select features for both the proximate and ultimate 

4 analysis cases, followed by the selection of an ANN architecture using the same optimization 

5 method. All other optimization methods (PSO, GA, RA-1, RA-2, SCA) followed the same 

6 strategy. Table 1 shows the features selected by various optimization methods for both the 

7 proximate and ultimate cases. For proximate analysis, the GWO method selected 8 input features 

8 out of 11 features, while for ultimate analysis, a total of 9 features were chosen. Similarly, the 

9 RA-1, RA-2, SCA, GA, and PSO methods selected 8, 9, 8, 7, and 5 features for proximate 

10 analysis, respectively, whereas 4, 9, 7, 8, and 9 features were chosen for ultimate analysis. 

11 Likewise, these metaheuristic algorithms were also successfully employed for ANN architecture 

12 (hidden layers and associated neurons) selection as shown in Table 2. The set of hidden layers 

13 and associated neurons were selected based on the lowest RMSE values of the ANN model. 

14 3.3. Prediction performance of ANN models

15 After the selection of optimal input features and ANN architectures using metaheuristic 

16 optimization algorithms (discussed in previous sections 3.1 and 3.2), the ANN-based models 

17 were successfully trained and tested using the set of these selected features and architectures to 

18 predict the biochar yield. These ANN models coupled with various optimization methods are 

19 termed ANN-GWO, ANN-RA 1, ANN-RA 2, ANN-SCA, ANN-GA, and ANN-PSO. The ANN 

20 models were constructed considering proximate analysis data with structural information and 

21 pyrolysis conditions, and the ultimate analysis data with structural information and pyrolysis 

22 conditions. A total of 402 data points were used for developing the ANN models with 80% 
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1 training and 20% being used as testing data. A feed-forward neural network (ANN) with 

2 backpropagation using the Levenberg-Marquardt algorithm was used for training the model. In 

3 the hidden and output layers, the tangent sigmoid and purelin transfer functions were employed, 

4 respectively. The coefficient of determination (R2) and root mean squared error (RMSE) values 

5 were used to assess the performance of ANN models as shown in Table 3. The prediction 

6 performance of ANN-based models was validated using a test dataset as shown in Figure 3. 

7 In the case of proximate analysis (case 1), the ANN-RA 1, ANN-GA, and ANN-PSO showed 

8 almost comparable performance (R2~0.92, RMSE<2) for biochar yield prediction. However, the 

9 analysis based on selected features and ANN architecture as shown in Table 1 and 2 showed that 

10 the PSO model selected 5 features out of 12 features in the case of proximate analysis while GA 

11 and RA 1 models have selected 7 and 8 features, respectively. Similarly, the PSO, GA, and RA 1 

12 models have selected 2 hidden layers while RA 2 has selected 3 hidden layers, hence required 

13 comparatively more computational time. In addition, the ANN-RA 2 model exhibited high 

14 performance (R2~0.93, RMSE~1.74) followed by the ANN-PSO, ANN-GA, and RA 1 models 

15 (R2~0.92, RMSE<2 each). This is because, the best model is the model with least number of 

16 input parameters, hidden layers, and number of neurons along with highest R2 and lowest RMSE 

17 values, which are the performance evaluation criterion. As a result, the model with the highest R2 

18 and lowest RMSE values is not deemed the best of all models as long as it has the least input 

19 parameters, hidden layers, and associated neurons. Therefore, in terms of R2 and RMSE values, 

20 ANN-RA 2 model outperformed ANN-PSO, ANN-GA, and RA 1 models. However, in terms of 

21 a number of features and ANN architecture, GA and PSO have selected least features (7 features 

22 out of 11 input features) followed by RA 1 and GWO (8, 8 features), and RA 2 and PSO (9, 9 

23 features). Similarly, GA, PSO, and RA 1 models have selected 2 hidden layers while RA 2 has 

https://www.sciencedirect.com/science/article/pii/S0960852421006313?casa_token=BYCo3DzlQnsAAAAA:dWz90sE9fk-tPwoC0jTvlWEfOyelxwIG_ixdTznsQ6UCa-JgbGAm7Cb5vFBb7LfWEDywRfPj#t0015
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1 selected 3 hidden layers. Hence, in terms of number of in terms of a number of features and 

2 ANN architecture, GA, PSO, and RA 1 performed better than RA 2.

3 In the case of ultimate analysis (case 2), the ANN-RA 1 model showed poor results (R2~0.70, 

4 RMSE~3.55) followed by ANN-SCA (R2~0.78, RMSE~3.43). However, the ANN-RA 2, ANN-

5 GA and ANN-PSO-based models showed identical performance (R2~0.88, RMSE<3). In terms 

6 of a number of features and ANN architecture selection, the RA 1 has selected 4 features out of 

7 11 input features followed by SCA and GA with 7 and 8 features, respectively. While GWO, RA 

8 2, and PSO have selected 9 features each. All of the models performed better than the previously 

9 reported ML-based studies for biochar yield prediction (Pathy et al., 2020; Zhu et al., 2019).

10 In summary, various ANN models coupled with metaheuristic optimization algorithms were 

11 successfully trained and tested for the prediction of biochar yield. Results indicated that ANN-

12 SCA model showed poor performance compared to ANN-GWO, ANN-RA 1, ANN-RA 2, 

13 ANN-GA, and ANN-PSO. The reason behind ANN-SCA's poor performance in comparison to 

14 other models is that for the same number of iterations and population, the model was unable to 

15 find a comparatively satisfactory solution and may require additional iterations. Furthermore, the 

16 ANN-GA and ANN-PSO models showed almost identical results in both proximate and ultimate 

17 cases. It was observed that the ANN-RA 2 and ANN-PSO outperformed all other models in 

18 terms of R2 and RMSE values as well as based on the least number of features and ANN 

19 architecture selection.

20 In general, the trend of prediction performances of various ANN models (most to least accurate) 

21 based on R2 and RMSE values for case 1 (proximate analysis) was as follows; (ANN-RA 2 > 

22 ANN-PSO > ANN-GA > ANN-RA-1 > ANN-GWO > ANN-SCA > ANN-RA-2). Similarly, in 

23 case 2 (ultimate analysis) the overall trend was as follows; (ANN-PSO > ANN-RA 2 > ANN-GA 
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1 > ANN-GWO > ANN-SCA> ANN-RA 1). Overall, the proximate analysis-based ANN models 

2 outperformed ultimate analysis-based models. It is clear from the findings that the novel 

3 approach for features and ANN architecture selection using optimization algorithms helped 

4 select the optimal features and ANN architecture which would help reduce the number of 

5 features, and computational time with better ANN prediction performance. Thus, it is suggested 

6 based on this study that ANN models may be employed well for the prediction of biochar yield 

7 without the need for lab-based experiments, hence reducing the time and expense of testing with 

8 the minimum features. 

9 The prediction performance of the employed proximate analysis-based models (ANN-GWO, 

10 ANN-RA 1, ANN-RA 2, ANN-SCA, ANN-GA, and ANN-PSO) over various data points are 

11 shown in Figure 4. The black dotted line shows the actual data, blue circles show ANN-GWO, 

12 the green line represents ANN-RA 1, red diamond-shaped points represent ANN-RA 2, purple 

13 square-shaped points denote ANN-SCA, pink line denotes ANN-GA, and the light blue line 

14 represents the variations in the ANN-PSO model, respectively. It is observed that ANN-RA 2 

15 closely followed the same trend over various data points as followed by the experimental data. 

16 After ANN-RA 2, the ANN-PSO has also shown a smaller deviation from the actual data points. 

17 Whereas, ANN-SCA showed clear predicting deviation from the actual data and it is also proved 

18 from its lower R2 and higher RMSE values as shown in Table 1, hence it is not recommended 

19 this case due to its poor performance. Finally, the results of all ANN models (ANN-GWO, ANN-

20 Rao 1, ANN-Rao 2, ANN-SCA, ANN-PSO, and ANN-GA) were compared and validated with 

21 10 different experimental studies taken from the literature (Abnisa et al., 2013; Angin, 2013; 

22 Chen et al., 2015; Demirbas, 2004; Iaccarino et al., 2021; Khuenkaeo & Tippayawong, 2020; 

23 Mani et al., 2011; Oginni et al., 2017; Şensöz & Angin, 2008; Windeatt et al., 2014). The 
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1 validation of developed models with the experimental studies showed an average deviation of 

2 <2% (see supplementary materials). Consequently, based on these comparisons, we may infer 

3 that the ANN-RA 2 method predicts biochar yield more accurately than the other methods. The 

4 results show that the suggested ANN-based models may be utilized successfully for the 

5 prediction of biochar yield without the need for lab-based experiments, hence saving time and 

6 resources. Furthermore, the significance level (p-value, a statistical test used to check the validity 

7 of a hypothesis against observable data) of all models was evaluated using the T-test. The 

8 threshold level of significance (alpha) was selected to be 0.01. The null hypothesis was that the 

9 sample mean value is equal to the coefficient of determination (R2) values of each model, but the 

10 alternative hypothesis was that the sample mean R2 value is not equal to the R2 values of the 

11 models shown in Table 3. The T-test was performed on R2 value calculated form 20 random 

12 samples from the dataset each having 20 data points. The model with p-value greater than 0.01 

13 means that the null hypothesis is accepted while the model with p-value lower than 0.01 means 

14 that the null hypothesis is rejected. In the case of proximate analysis, ANN-GWO, ANN-RA 2, 

15 and ANN-SCA models have p-value greater than 0.01 hence the null hypothesis was accepted 

16 while ANN-RA 1, ANN-GA, and ANN-PSO models have p-value lower than 0.01 hence the null 

17 hypothesis was rejected. Similarly, in the case of ultimate analysis, ANN-RA 2, ANN-SCA, 

18 ANN-GA, and ANN-PSO models have p-value greater than 0.01 hence the null hypothesis was 

19 accepted while ANN-RA 1 and ANN-GWO models have p-value lower than 0.01 hence the null 

20 hypothesis was rejected. In summary, the significance analysis indicated how significant the 

21 average R2 values from 20 runs of each ANN model.

22 3.4. ANN model-based feature analysis
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1 The influence of various input parameters on the biochar yield can be evaluated using feature 

2 importance based on the ANN-RA 2 model (best model). The impact of selected features for 

3 ANN-RA 2 is shown in Figure 5.  The features were ranked by their corresponding importance 

4 (from least to most important). It can be seen from Figure 5, that in the case of proximate 

5 analysis based ANN- RA 2 model, the most influential parameter on the biochar yield was HTT 

6 (56% importance), followed by RT (23%) and HR (8%) on the second and third rank based on 

7 their relative importance. The ranking of the relative importance of HR, HTT, and RT agreed 

8 well with the literature (Angin, 2013; Tripathi et al., 2016). Furthermore, the remaining features 

9 based on the ANN-RA 2 model were ranked as follows; FC (5%), Hem (3%), VM (2%), 

10 cellulose (1%), MC (0.3%), and Ash (0.3%). 

11 Although the feature importance plot illustrates the relative importance of input parameters for 

12 the biochar yield, it could not interpret how the input parameters impact the biochar yield. As a 

13 result, partial dependence analysis (PDA) was carried out to elucidate the impact of the most 

14 important parameters on biochar yield. Figure 6 shows the PDA plot for the evaluation of the 

15 individual impact of input features on the biochar yield. The tick marks on the x-axis indicate the 

16 feature data density, and without them, the trendline may be meaningless. The influence of 

17 increasing HTT showed a negative impact on biochar yield, as shown in Figure 6a. The rapid 

18 decline in the biochar yield with an increase in the value HTT from 350-410 oC was due to the 

19 breakdown and devolatilization of volatile matter and moisture content confined in biomass 

20 feedstock (Zhao et al., 2018). In the range of 410-600 oC, the biochar yield was decreased but at 

21 a gradual pace which may be due to the breakdown of biomass structural contents (cellulose, 

22 hemicellulose, and lignin) (Stefanidis et al., 2014). Furthermore, the biochar yield decreases with 

23 an increase in the HR (Figure 6b), as the high HR results in thermal cracking of biomass and 



22

1 supports the production of gaseous and liquid products. Whereas at low HR, no thermal cracking 

2 or depolymerization of biomass takes place leading to more biochar yield (Tripathi et al., 2016). 

3 Cellulose and hemicellulose contents in biomass feedstock are likely to produce volatile products 

4 while lignin is liable to the biochar yield. Therefore, the biochar yield decreases with an increase 

5 in cellulose and hemicellulose contents (Figure 6d and 6f) while increases with an increase in 

6 lignin content (Figure 6e) (Tomczyk et al., 2020). Nevertheless, some studies have also reported 

7 that biochar yield increases with an increase in the cellulose and lignin contents but the presence 

8 of lignin content in biomass results in more biochar compared to the cellulose content 

9 (Demirbas, 2004). In addition, Figure 6c shows that with an increase in ash content the biochar 

10 yield increases due to the presence of inorganic components in biomass feedstock (K. Wang et 

11 al., 2015). Overall, the PDP examination was useful for examining the influencing parameters of 

12 biomass pyrolysis and easing the process optimization in engineering applications. Future 

13 research is needed to better understand the relationship between various other parameters (such 

14 as the detailed structures of cellulose-hemicellulose-lignin, the categories of various woody and 

15 grassy biomass, the mass of biomass samples, the ash composition, and the pyrolyzer design 

16 parameters, among others) and the output parameter. To get a better understanding of the 

17 interaction between various input and output characteristics, deep learning-based prediction 

18 models for biochar production should be implemented. This research provides a practical 

19 technique for future comprehensive biomass conversion research.

20

21

22 4. Conclusions
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1 The biochar yield was successfully predicted with an integrated framework of ANN and 

2 metaheuristic algorithms using biomass characteristics and pyrolysis conditions. The ANN-RA 2 

3 model showed good performance (R2~0.93) as compared to other models ANN-PSO (R2~0.92), 

4 ANN-GA (R2~0.92), ANN-RA 1 (R2~0.92), SCA (R2~0.84), and ANN-GWO (R2~0.85). 

5 Furthermore, the validation of developed models with the experimental studies showed an 

6 average deviation of <2%. PDP analysis indicated that the optimal parameters selected using 

7 various metaheuristic algorithms have a significant impact on biochar yield. This study paves the 

8 way for future implementation of ML methods in research and industrial applications, beyond 

9 predicting yields.

10 “E-supplementary data of this work can be found in online version of the paper”
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1 Table 1: Features selected by metaheuristic optimization algorithms

Optimization Algorithms Proximate Analysis Ultimate Analysis

GWO MC, ash, cellulose, hemicellulose, HTT, 

HR, RT, PS

C, H, O, lignin, cellulose, 

hemicellulose, HTT, HR, PS

RA-1 FC, VM, ash, lignin, cellulose, HTT, RT, 

PS

C, O, lignin, PS

RA-2 FC, VM, MC, ash, cellulose, lignin, 

HTT, HR, RT

C, N, O, lignin, cellulose, 

hemicellulose, HTT, HR, RT

SCA FC, VM, ash, cellulose, HTT, HR, RT, 

PS

C, N, cellulose, HTT, HR, RT, PS 

GA VM, MC, ash, hemicellulose, HTT, HR, 

PS

N, H, lignin, cellulose, HTT, HR, 

RT, PS

PSO FC, VM, ash, lignin, PS C, H, O, lignin, cellulose, HTT, HR, 

RT, PS 

2

3

4

5

6

7
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1         Table 2: ANN architecture selected by metaheuristic optimization algorithms

Proximate Analysis Ultimate Analysis

Model Hidden 

Layers

Number of 

Neurons

Hidden 

Layers

Number of 

Neurons

GWO 3 30, 30, 23 3 23, 27, 30

RA 1 2 27, 30 3 23, 20, 18

RA 2 3 30, 30, 12 3 30, 26, 5

SCA 2 20, 25 2 9, 5

GA 2 22, 18 3 28, 23, 18

PSO 1 18 1 15

2

3

4

5

6

7

8

9

10



34

1 Table 3: Prediction performance of ANN models

Proximate Analysis Ultimate Analysis

Model R2 RMSE P-valuea R2 RMSE P-valuea

ANN-GWO 0.85 2.82 0.414 0.87 2.52 0.001

ANN-RA 1 0.92 1.89 0.004 0.70 3.55 0.034

ANN-RA 2 0.93 1.74 0.030 0.88 2.23 0.212

ANN-SCA 0.84 2.86 0.276 0.78 3.43 0.742

ANN-GA 0.92 1.87 0.009 0.88 2.25 0.259

ANN-PSO 0.92 1.82 0.007 0.88 2.18 0.011

2 a: P-value based on the R2 values of corresponding models.

3
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Figure 1: Box plot of the raw dataset 
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Figure 2: Proposed framework for features (Fig. 2A) and ANN architecture selection (Fig. 2B).
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Figure 3: Comparison of experimental results and predicted model outputs (dashed line) trained using test data (solid 
blue circles): (A) ANN-GWO (B) ANN-RA 1 (C) ANN-RA 2 (D) ANN-SCA (E) ANN-GA (F) ANN-PSO. The black 

lines show the line y = x (i.e. predicted values = true values).
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Figure 4: Variations of biochar yield predicted by ANN models over various data points
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Figure 5:Schematic of feature importance on the predicted yield of biochar 

(The black lines on each bar shows the positive error bars)
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Figure 6: Partial differential plots for biochar yield: (a) HTT (b) HR (c) Ash (d) Cellulose 
(e) Lignin (f) Hemicellulose
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16  ANN coupled with metaheuristic algorithms were used to predict biochar yield

17  ANN integrated with Rao-2 algorithm outperformed all other models (R2~0.93) 

18  Pyrolysis temperature and residence time were the most important features

19  Partial dependence analysis revealed inside details for the pyrolysis process

20  An easy-to-use graphical user interface was developed for biochar yield prediction

21

22



42

1


