61 research outputs found

    Filoviruses utilize glycosaminoglycans for their attachment to target cells

    Get PDF
    Filoviruses are the cause of severe hemorrhagic fever in human and nonhuman primates. The envelope glycoprotein (GP), responsible for both receptor binding and fusion of the virus envelope with the host cell membrane, has been demonstrated to interact with multiple molecules in order to enhance entry into host cells. Here we have demonstrated that filoviruses utilize glycosaminoglycans, and more specifically heparan sulfate proteoglycans, for their attachment to host cells. This interaction is mediated by GP and does not require the presence of the mucin domain. Both the degree of sulfation and the structure of the carbohydrate backbone play a role in the interaction with filovirus GPs. This new step of filovirus interaction with host cells can potentially be a new target for antiviral strategies. As such, we were able to inhibit filovirus GP-mediated infection using carrageenan, a broad-spectrum microbicide that mimics heparin, and also using the antiviral dendrimeric peptide SB105-A10, which interacts with heparan sulfate, antagonizing the binding of the virus to cells

    Role of Misfolded N-CoR Mediated Transcriptional Deregulation of Flt3 in Acute Monocytic Leukemia (AML)-M5 Subtype

    Get PDF
    The nuclear receptor co-repressor (N-CoR) is a key component of the generic multi-protein complex involved in transcriptional control. Flt3, a key regulator of hematopoietic cell growth, is frequently deregulated in AML (acute myeloid leukemia). Here, we report that loss of N-CoR-mediated transcriptional control of Flt3 due to misfolding, contributes to malignant growth in AML of the M5 subtype (AML-M5). An analysis of hematopoietic genes in AML cells led to the identification of Flt3 as a transcriptional target of N-CoR. Flt3 level was inversely related to N-CoR status in various leukemia cells. N-CoR was associated with the Flt3 promoter in-vivo, and a reporter driven by the Flt3 promoter was effectively repressed by N-CoR. Blocking N-CoR loss with Genistein; an inhibitor of N-CoR misfolding, significantly down-regulated Flt3 levels regardless of the Flt3 receptor mutational status and promoted the differentiation of AML-M5 cells. While stimulation of the Flt3 receptor with the Flt3 ligand triggered N-CoR loss, Flt3 antibody mediated blockade of Flt3 ligand-receptor binding led to N-CoR stabilization. Genetic ablation of N-CoR potentiated Flt3 ligand induced proliferation of BA/F3 cells. These findings suggest that N-CoR-induced repression of Flt3 might be crucial for limiting the contribution of the Flt3 signaling pathway on the growth potential of leukemic cells and its deregulation due to N-CoR loss in AML-M5, could contribute to malignant growth by conferring a proliferative advantage to the leukemic blasts. Therapeutic restoration of N-CoR function could thus be a useful approach in restricting the contribution of the Flt3 signaling pathway in AML-M5 pathogenesis

    Generation of recombinant hyperimmune globulins from diverse B-cell repertoires

    Get PDF
    Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Identification of a common T/natural killer cell progenitor in human fetal thymus.

    Get PDF
    The phenotypic similarities between natural killer (NK) and T cells have led to the hypothesis that these distinctive lymphocyte subsets may be developmentally related and thus may share a common progenitor (Lanier, L. L., H. Spits, and J. H. Phillips, 1992. Immunol. Today. 13:392; Rodewald, H.-R., P. Moingeon, J. L. Lurich, C. Dosiou, P. Lopez, and E. L. Reinherz. 1992. Cell. 69:139). In this report, we have investigated the potential of human CD34+ triple negative thymocytes ([TN] CD3-, CD4-, CD8-) to generate both T cells and NK cells in murine fetal thymic organ cultures (mFTOC) and in vitro clonogenic assays. CD34+ TN thymocytes, the majority of which express prominent cytoplasmic CD3 epsilon (cytoCD3 epsilon) protein, can be divided into high (CD34Bright) and low (CD34Dim) surface expressing populations. CD34Bright TN thymocytes were capable of differentiating into T and NK cells when transferred into mFTOC, and demonstrated high NK cell clonogenic capabilities when cultured in interleukin (IL)-2, IL-7, and stem cell factor (SCF). Likewise, CD34Bright TN thymocyte clones after 5 d in culture were capable of generating NK and T cells when transferred into mFTOC but demonstrated clonogenic NK cell differentiation capabilities when maintained in culture with IL-2. CD34Dim TN thymocytes, however, possessed only T cell differentiation capabilities in mFTOC but were not expandable in clonogenic conditions containing IL-2, IL-7, and SCF. No significant differentiation of other cell lineage was detected in either mFTOC or in clonogenic assays from CD34+ TN thymocytes. These results represent the first definitive evidence of a common T/NK cell progenitor in the human fetal thymus and delineate the point in thymocyte differentiation where T and NK cells diverge
    corecore