8,134 research outputs found

    Fermiology via the electron momentum distribution

    Get PDF
    Investigations of the Fermi surface via the electron momentum distribution reconstructed from either angular correlation of annihilation radiation (or Compton scattering) experimental spectra are presented. The basis of these experiments and mathematical methods applied in reconstructing three-dimensional densities from line (or plane) projections measured in these experiments are described. The review of papers where such techniques have been applied to study the Fermi surface of metallic materials with showing their main results is also done.Comment: 22 pages, 9 Figures, 4 Table

    Cross-shell excitation in two-proton knockout: Structure of 52^{52}Ca

    Get PDF
    The two-proton knockout reaction 9^9Be(54^{54}Ti,52^{52}Ca+γ + \gamma) has been studied at 72 MeV/nucleon. Besides the strong feeding of the 52^{52}Ca ground state, the only other sizeable cross section proceeds to a 3^- level at 3.9 MeV. There is no measurable direct yield to the first excited 2+^+ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of 52^{52}Ca

    Population of bound excited states in intermediate-energy fragmentation reactions

    Get PDF
    Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure

    Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World-Earth modeling framework

    Get PDF
    Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes

    Shell structure at N=28 near the dripline: spectroscopy of 42^{42}Si, 43^{43}P and 44^{44}S

    Get PDF
    Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported. The knockout reaction cross sections for populating 42Si and 43P and a 184 keV gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits are nearly degenerate in these nuclei and that there is a substantial Z=14 subshell closure separating these two orbits from the d_{5/2} orbit. The increase in the inclusive two-proton knockout cross section from 42Si to 44S demonstrates the importance of the availability of valence protons for determining the cross section. New calculations of the two-proton knockout reactions that include diffractive effects are presented. In addition, it is proposed that a search for the d_{5/2} proton strength in 43P via a higher statistics one-proton knockout experiment could help determine the size of the Z=14 closure.Comment: Phys. Rev. C, in pres

    Investigation of Systematic Bias in Radiometric Diameter Determination of Near-Earth Asteroids: the Night Emission Simulated Thermal Model (NESTM)

    Get PDF
    The Near-Earth Asteroid Thermal Model (NEATM, Harris, 1998) has proven to be a reliable simple thermal model for radiometric diameter determination. However NEATM assumes zero thermal emission on the night side of an asteroid. We investigate how this assumption affects the best-fit beaming parameter, overestimates the effective diameter and underestimates the albedo at large phase angles, by testing NEATM on thermal IR fluxes generated from simulated asteroid surfaces with different thermal inertia. We compare NEATM to radar diameters and find that NEATM overestimates the diameter when the beaming parameter is fitted to multi-wavelength observations and underestimates the diameter when the default beaming parameter is used. The Night Emission Simulated Thermal Model (NESTM) is introduced. NESTM models the night side temperature as an iso-latitudinal fraction (f) of the maximum day side temperature (Maximum temperature calculated for NEATM with beaming parameter = 1). A range of f is found for different thermal parameters, which depend on the thermal inertia. NESTM diameters are compared with NEATM and radar diameters, and it is shown that NESTM may reduce the systematic bias in overestimating diameters. It is suggested that a version of the NESTM which assumes the thermal inertia = 200 S.I. units is adopted as a default model when the solar phase angle is greater than 45 degrees.Comment: 48 pages, 10 Figures, 5 Table

    A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2

    Get PDF
    The A-dependence of the quasielastic A(e,e'p) reaction has been studied at SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the average probability that the struck proton escapes from the nucleus A without interaction. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as Color Transparency. No significant rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73

    One-neutron removal reactions on neutron-rich psd-shell nuclei

    Full text link
    A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.Comment: 11 pages + 2 figure

    Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures

    Full text link
    We study the energy structure of two-dimensional holes in p-type single Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field. Photoluminescence measurments with low densities of excitation power reveal rich spectra containing both free and bound-carrier transitions. The experimental results are compared with energies of valence-subband Landau levels calculated using a new numerical procedure and a good agreement is achieved. Additional lines observed in the energy range of free-carrier recombinations are attributed to excitonic transitions. We also consider the role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review

    Low-lying quadrupole collective states of the light and medium Xenon isotopes

    Full text link
    Collective low lying levels of light and medium Xenon isotopes are deduced from the Generalized Bohr Hamiltonian (GBH). The microscopic seven functions entering into the GBH are built from a deformed mean field of the Woods-Saxon type. Theoretical spectra are found to be close to the ones of the experimental data taking into account that the calculations are completely microscopic, that is to say, without any fitting of parameters.Comment: 8 pages, 4 figures, 1 tabl
    corecore