3,621 research outputs found

    Total variation denoising in l1l^1 anisotropy

    Full text link
    We aim at constructing solutions to the minimizing problem for the variant of Rudin-Osher-Fatemi denoising model with rectilinear anisotropy and to the gradient flow of its underlying anisotropic total variation functional. We consider a naturally defined class of functions piecewise constant on rectangles (PCR). This class forms a strictly dense subset of the space of functions of bounded variation with an anisotropic norm. The main result shows that if the given noisy image is a PCR function, then solutions to both considered problems also have this property. For PCR data the problem of finding the solution is reduced to a finite algorithm. We discuss some implications of this result, for instance we use it to prove that continuity is preserved by both considered problems.Comment: 34 pages, 9 figure

    Comparing Community Structure to Characteristics in Online Collegiate Social Networks

    Get PDF
    We study the structure of social networks of students by examining the graphs of Facebook "friendships" at five American universities at a single point in time. We investigate each single-institution network's community structure and employ graphical and quantitative tools, including standardized pair-counting methods, to measure the correlations between the network communities and a set of self-identified user characteristics (residence, class year, major, and high school). We review the basic properties and statistics of the pair-counting indices employed and recall, in simplified notation, a useful analytical formula for the z-score of the Rand coefficient. Our study illustrates how to examine different instances of social networks constructed in similar environments, emphasizes the array of social forces that combine to form "communities," and leads to comparative observations about online social lives that can be used to infer comparisons about offline social structures. In our illustration of this methodology, we calculate the relative contributions of different characteristics to the community structure of individual universities and subsequently compare these relative contributions at different universities, measuring for example the importance of common high school affiliation to large state universities and the varying degrees of influence common major can have on the social structure at different universities. The heterogeneity of communities that we observe indicates that these networks typically have multiple organizing factors rather than a single dominant one.Comment: Version 3 (17 pages, 5 multi-part figures), accepted in SIAM Revie

    Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time

    Full text link
    We prove, for the relativistic Boltzmann equation on a Bianchi type I space-time, a global existence and uniqueness theorem, for arbitrarily large initial data.Comment: 17 page

    On the existence of traveling waves in the 3D Boussinesq system

    Full text link
    We extend earlier work on traveling waves in premixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. For three-dimensional channels not aligned with the gravity direction and under the Dirichlet boundary conditions in the fluid velocity, it is shown that a non-planar traveling wave, corresponding to a non-zero reaction, exists, under an explicit condition relating the geometry of the crossection of the channel to the magnitude of the Prandtl and Rayleigh numbers, or when the advection term in the flow equations is neglected.Comment: 15 pages, to appear in Communications in Mathematical Physic

    Directional approach to spatial structure of solutions to the Navier-Stokes equations in the plane

    Full text link
    We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity u∞u_\infty at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of u∞u_\infty. Furthermore a spacial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the directino of the flow as \emph{time} direction. The analysis is done in framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modeled by elliptic equations

    Valley-polarized tunneling currents in bilayer graphene tunneling transistors

    Get PDF
    We study theoretically the electron current across a monolayer graphene/hexagonal boron nitride/bilayer graphene tunneling junction in an external magnetic field perpendicular to the layers. We show that change in effective tunneling barrier width for electrons on different graphene layers of bilayer graphene, coupled with the fact that its Landau level wave functions are not equally distributed amongst the layers with a distribution that is reversed between the two valleys, lead to valley polarization of the tunneling current. We estimate that valley polarization ∌70% can be achieved in high quality devices at B=1 T. Moreover, we demonstrate that strong valley polarization can be obtained both in the limit of strong-momentum-conserving tunneling and in lower quality devices where this constraint is lifted

    Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy

    Get PDF
    The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds

    Role of social environment and social clustering in spread of opinions in co-evolving networks

    Get PDF
    Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the co-evolving network voter model of opinion formation, studied by Holme and Newman [1]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for the asymmetric influences in relationships among individuals in a social group. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of the simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus leading to the existence of diverse set of opinions and the other having one single dominant connected component with each node within it having the same opinion. Furthermore, and more importantly, we found that the initial clustering in network can also induce similar transitions. Our investigation also brings forward that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes. [1] P. Holme and M. Newman, Phys. Rev. E 74, 056108 (2006)

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table
    • 

    corecore