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Taking a pragmatic approach to the processes involved in the phenomena of collective opinion

formation, we investigate two specific modifications to the coevolving network voter model of

opinion formation studied by Holme and Newman [Phys. Rev. E 74, 056108 (2006)]. First, we

replace the rewiring probability parameter by a distribution of probability of accepting or rejecting

opinions between individuals, accounting for heterogeneity and asymmetric influences in

relationships between individuals. Second, we modify the rewiring step by a path-length-based

preference for rewiring that reinforces local clustering. We have investigated the influences of

these modifications on the outcomes of simulations of this model. We found that varying the shape

of the distribution of probability of accepting or rejecting opinions can lead to the emergence of

two qualitatively distinct final states, one having several isolated connected components each in

internal consensus, allowing for the existence of diverse opinions, and the other having a single

dominant connected component with each node within that dominant component having the same

opinion. Furthermore, more importantly, we found that the initial clustering in the network can also

induce similar transitions. Our investigation also indicates that these transitions are governed by a

weak and complex dependence on system size. We found that the networks in the final states of the

model have rich structural properties including the small world property for some parameter

regimes. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4833995]

As the study of networks is applied to an ever broadening

variety of phenomena, it is important to study the proper-

ties of networks, dynamical processes coupled across net-

works, and the interplay between the two where the

coupled dynamics affect the network topology. A minimal

mathematical model that has been used to model the

social phenomena of collective opinion formation is the

coevolving voter model.1,16–26 We introduce two addi-

tional attributes to the multi-opinion coevolving voter

model, in order to describe processes and networks that

are closer to real-world situations within a still relatively

simple model. Our model includes a “social environ-

ment,” modeling the inherent heterogeneity and asymme-

try in relationships within a social group. We also include

a path-length-based preference for rewiring that reinfor-

ces social clustering. Our inclusion of this second attrib-

ute has been influenced by the fact that clustering is a

ubiquitous feature of networks and has not been incorpo-

rated as a dynamic entity in most coevolving voter mod-

els. We explore the consequences of these two additional

attributes within the coevolving voter model, comparing

and contrasting the behaviors of this only slightly more

complicated model with those of the minimal coevolving

voter model. Our results highlight the important role of

clustering, with possible consequences for future applica-

tions of coevolving voter models.

I. INTRODUCTION

It has been widely reported in the media that online

social networks like Facebook, Twitter, Blackberry messen-

ger, etc. played a key role in recent events in the world politi-

cal sphere such as the Arab spring and London riots of

2011.2–6 Meanwhile, there has also been increased interest in

the quantitative and analytical analysis of the mechanisms

and dynamics of the spread of social contagions such as

rumors and opinions on complex networks.6–15 In such stud-

ies, individuals in the society are represented by nodes with

edges indicating relationships between them, and then tech-

niques from social network analysis and from statistical and

nonlinear science are employed to analyze plausible models

of the dynamics of spread of social contagions on a

network.1,16–26

We propose a variation of the simplest coevolving net-

work voter model of opinion formation, studied by Holme

and Newman.1 In the model of Holme and Newman, an edge

between individuals with different opinions is either re-

wired to connect two nodes having the same opinion or the

opinion of an individual is changed to agree with the opinion

of one of its neighbors. The selection from these two options

is based on a parameter named the rewiring probability. We

add two more simple mechanisms to this model, inspired by

a pragmatic approach to the modeling of asymmetric influen-

ces and tendencies to local clustering in the phenomenon of

collective opinion formation. We then observe a broader

array of model behaviors induced by these modifications to

the coevolving voter model. For convenience of the presenta)Electronic mail: nmalik@email.unc.edu
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exposition, we refer to these additional mechanisms as: (1)

Social environment and (2) Social clustering. Below we

describe their meaning and significance in the processes of

opinion formation.

Acceptance or rejection of somebody else’s opinion by

an individual depends on a multitude of factors including the

strength of relationship between the concerned individuals.

A prevailing social environment (as defined, e.g., in Ref. 27)

not only alters relationships between individuals but can also

affect their opinions on different issues in a fundamental

way. A highly divisive society may be an outcome of inflexi-

bilities in relationships that exist between individuals who

resist accepting or sharing each others’ opinions, choices, or

views. Moreover, these inflexibilities themselves could be

due to the prevailing “negative” social environment. In con-

trast, a “positive” social environment leading to flexible rela-

tionships between individuals leads to less resistance to

accept each others’ opinions, choices, or views. In modern

times, media and advertising also play a significant role in

altering the social environment and in constructing consent

around certain opinions or choices.28

We propose to incorporate the effect of the social envi-

ronment on the model of opinion formation on coevolving

networks by a distribution of probability of accepting or

rejecting opinions between individuals. The distribution for

social environment replaces the constant rewiring probability

that has been used before in other studies on voter model

with coevolving networks.1,16–18 Such description of the

social environment becomes more plausible if we note the

fact that relationships among individuals in a social group

are inherently heterogeneous and asymmetric. For simplicity,

we have assumed that the social environment remains the

same over the temporal evolution of the model.

Another important aspect that has not yet been sufficiently

analyzed in the models of opinion formation on coevolving

networks has been the role of local clustering of edges in the

network and other similar preferences for new links to be

formed between nodes that are already near each other in the

network. Indeed, in most models studied to date, the dynamics

involved have been assumed to be independent of the any dis-

tances in the network beyond the immediate nature of whether

two nodes are already connected. In the present model we

have attempted to explore the complex consequences of a sim-

ple introduction of network-distance and clustering effects

into the model. Specifically, we replace the random rewiring

step of other models with a step that prefers rewiring to node-

s/actors who are already close within the network and who

have higher probability of accepting new opinions. This pro-

cess reinforces local clustering in the evolving network so that

clustering coefficients do not vanish in the large-network limit

(as in other previous models). Clustering is a fundamental

property of most network representations of social contexts,

i.e., friends of friends have a higher likelihood (relative to the

rest of the network) of also being friends.13,14,29 However,

rewiring rules for coevolving network models that do not rein-

force clustering (as in, e.g., Refs. 1 and 16) can randomize

away any initial clustering, greatly simplifying the associated

opinion dynamics at the cost of dynamically generating net-

works that are unlike real social networks.

The explicit incorporation of model processes for social
environment and social clustering provides a simple simula-

tion for the coupled effects of opinions with clustering and

homophily, the tendency of individuals to connect with indi-

viduals having similar characteristics.30

II. DESCRIPTION OF THE MODEL

Let GðN;EÞ be a network of N nodes and E edges with a

predefined topology. Let fOig represent a set of O number of

opinions initially uniformly distributed over the N nodes of

GðN;EÞ. Let pij be the probability of some node j accepting

an opinion from node i. The distribution PðpijÞ describes the

social environment determining the values of pij, the proba-

bility of the jth node accepting the opinion of the ith node. If

an edge exists between node i and j then we say Eij ¼ 1. An

edge connecting two nodes with different opinions (i.e.,

Eij ¼ 1 with Oi 6¼ Oj) is called a discordant edge. The total

number of discordant edges in G is represented by E� and

E ¼ Eþ þ E�, where Eþ represents the number of harmoni-

ous edges (i.e., edges connecting nodes with the same

opinion).

Algorithm 1: A voter model on a coevolving network with

clustering and heterogeneous levels of influence.

1: Generate a graph G of given topology

2: Generate a given distribution for pij, i.e., PðpijÞ
3: Populate nodes with O number of uniformly distributed

opinions fOig
4: Calculate E�
5: while E� 6¼ 0 do

6: Randomly choose a discordant edge Eij (with equal

probabilities of which end of the edge is labeled i and j)

7: Generate a uniform random number n between 0 and 1

8: if n < pij then

9: Oj  Oi

10: Calculate E�
11: else:

12: Remove the link between i and j, i.e., set Eij ¼ 0

13: Find the set N 0 ¼ fjgj 6¼i \ fkg
� Here fjgj 6¼i is a set containing all nodes such that each

element satisfies pij � n and set fkg contains all nodes not

directly connected to node i that are within graph-theoretic

distance d from note i, with d the minimum possible distance

such that N 0 6¼ ;. If no such distance exists, proceed

14: if N 0 6¼ ; then

15: Connect i randomly to any node l 2 N 0

16: Ol  Oi

17: else:

18: Connect i randomly to any node j s.t. Oj ¼ Oi

19: end if

20: Calculate E�
21: end if

22: end while
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Different individuals have different probabilities of ac-

ceptance of others’ opinions, which is here taken to be inde-

pendent of the existence of a link between the individuals.

Several factors ranging from socio-cultural affinity to the

prevailing political and economic situation can influence

these probabilities differently for different individuals. To

account for such variability we have used a distribution

PðpijÞ for rewiring probabilities rather than a constant. We

call PðpijÞ the social environment function, accounting for

the heterogeneous and asymmetric relationships among indi-

viduals. For the purposes of simply exploring a variety of

settings, we have considered two different kinds of power

laws for the social environment. We set PðpijÞ ¼ pa
ij to repre-

sent a flexible social environment, i.e., many individuals are

able to accept others’ opinions readily. Alternatively, we

consider PðpijÞ ¼ 1� pa
ij to represent an inflexible social

environment where individuals do not accept others’ opinion

readily and, hence, more churning happens in the network

dynamics [see Fig. 1(b)]. While there has been some empiri-

cal evidence to suggest that election results in multi-party

democracies have power law distributions of votes among

candidates from different parties31–33 (but see also Refs. 34

and 35), our use of a power law distribution in the present

context is driven only by its simplicity for simulation and for

the presentation of a qualitatively diverse set of social envi-

ronments as a one-parameter family. Other distributions such

as the exponential, beta, and extreme value distributions

should also suffice to reproduce similar features. Any distri-

bution which can qualitatively describe “flexible” and

“inflexible” regimes would be sufficient here for the intended

purpose here though of course some of the quantitative

results would vary.

Steps 13–16 in Algorithm 1 ensure that rewiring connec-

tions are mostly made according to social clustering, i.e., a

node has higher probability of connecting to a person who is

either a friend of a friend or, if no such connections are avail-

able, connecting to a person at the shortest possible distance

identified in the network. The set N 0 in Algorithm 1 consists

of nodes/individuals who are close to the node i both in

terms of path length between them in the network and also in

that they have higher probabilities of accepting the opinion

of node i. Hence, we call the nodes within the set N0 to be

socially close to the node i. If node i is not able to find an

individual satisfying the required constraints, it connects uni-

formly at random to somebody else holding the same opinion

to avoid complete social isolation.

Here, we aim to study the role of clustering of the net-

work in altering the opinion space and network properties of

the final end state. In so doing, our emphasis will be on tran-

sitions that occur in the network structure (notably, sizes and

clustering of connected components) rather then just the

space of opinions. We refer to the ratio of the number of

opinions to the number of nodes, O/N, as diversity. We have

fixed the average degree hki ¼ 4 and number of opinions

O¼ 100 for the simulations, if not mentioned otherwise. We

have additionally investigated other values of numbers of hki
and O to confirm the robust nature of the qualitative proper-

ties that we describe. By the definition of the dynamics, the

number of edges is conserved: at any time t, EðtÞ ¼ hki N
2
.

Letting the coevolution of the network and opinions start at

t ¼ t� with initial number of discordant edges E�ðt�Þ, the dy-

namics stop at the earliest t ¼ tf such that E�ðtf Þ ¼ 0. That

is, the final state of this model has no discordant edges

remaining.

There are several levels of additional complexity that

might be considered, and other plausible choices could be

made to provide new insights into the coevolving dynamics

of opinions and networks. But most such choices come at the

price of making the model analytically harder to track.

Indeed, even the very limited analytical tractability of graph

fission in a two-opinion coevolving voter model presented in

Ref. 16 is undoubtedly aided by the rewiring rule considered

there randomizing away all non-trivial clustering. In light of

the significant complications introduced by the distance-

influenced rewiring rule considered here, we have attempted

to computationally analyze this model in a thorough manner.

A. Basic features of the model

In this section we give a brief introduction to the basic

features of this model. First, we obtain two qualitatively dis-

tinct final states as we vary the social environment from flex-

ible to inflexible. For a flexible social environment with

PðpijÞ ¼ pa
ij and a ¼ 6:0, we observe formation of a single

large connected component of size comparable to the initial

network with each node in the component having the same

opinion. We call this kind of final state a hegemonic consen-
sus because of the emergence of one single dominating opin-

ion. For an inflexible social environment, simulated by

setting PðpijÞ ¼ 1� pa
ij with a ¼ 6:0, we observe that the ini-

tially connected network disintegrates into a large number of

small connected components where every node in a given

component holds the same opinion, i.e., each component is

in a state of internal consensus. We will refer to this kind of

final state as a segregated consensus as this feature is qualita-

tively similar to the segregation of individuals in a society. A

lattice based classical model of this social phenomena was

given by Thomas Schelling,20 where he showed segregation

of two groups of populations (“red” and “white”) who move

over a check board following some simple rules. Several

FIG. 1. Different types of social environment function PðpijÞ, where pij is

the probability of the jth node accepting the opinion of the ith node: (a)

“inflexible,” PðpijÞ ¼ 1� pa
ij, so that more links will have lower probabil-

ities of accepting opinions; (b) “flexible,” PðpijÞ ¼ pa
ij, so that more links

will have higher probabilities of accepting opinions.
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analytical and simulation results have been obtained follow-

ing Schelling’s model on networks as well as on coevolving

networks but not in the context of modeling processes

involved in collective opinion formation.36–38

A visualization for these observations for N¼ 1000

nodes with O¼ 100 is shown in Fig. 2. The drastic transition

between the hegemonic consensus and segregated consensus
in the final states of the systems seems to occur somewhere

between the extreme flexible to inflexible social environ-

ments. Holme and Newman1 observe some transitions quali-

tatively similar to this distinction between hegemonic and

segregated consensus by changing their constant rewiring

probability parameter. Intuitively, it is not surprising that

changing the distribution of the social environment induces a

transition similar to that studied by Holme and Newman,1

insofar as the change in the distribution changes the overall

average level of rewiring. Nevertheless, a priori we have no

reason to expect that change in the form of the distribution

of probabilities of accepting or rejecting of others’ opinions

should have similar effects as the changes to the single rewir-

ing probability parameter employed by Holme and

Newman.1 Also, the detailed structural properties of the net-

work in the hegemonic consensus and segregated consensus
in the final states observed here are expected to be much

richer, as shown and discussed below in some detail.

In Fig. 3 we observe the effect of varying the social

environment, where si is the size (fraction of nodes in the

network) of the ith component in the final consensus state,

with i indexing the rank of the component sizes (i¼ 1 being

the largest component). A further analysis of the phase tran-

sition involved in emergence of these two distinct states in

this system has been attempted in detail in Sec. III, as one of

the two central themes of this paper.

The giant consensus community occurring in the Holme

and Newman model1 would appear to be structurally similar

FIG. 2. A visual representation of the

formation of qualitatively distinct con-

sensus states for two different social

environments. Both systems start with

an initial Watts-Strogatz network (with

N¼ 1000, hki ¼ 4, and C ¼ 0:1). (a)

Setting PðpijÞ ¼ 1� pa
ij and a ¼ 6 cre-

ates an “inflexible” social environment.

We observe disintegration of the net-

work into small connected components

with each component in internal con-

sensus, i.e., segregated consensus
occurs in the network. (b) Setting

PðpijÞ ¼ pa
ij and a ¼ 6 creates a

“flexible” social environment. We

observe a dominant connected compo-

nent in the final consensus, with size

comparable to the initial network, while

a large number of the initial opinions

go extinct. We refer this kind of final

state as a hegemonic consensus.

FIG. 3. The effect of different social environments on a network of

N¼ 1000 nodes with O¼ 100 opinions initially present. The starting net-

work is an Erd}os-R�enyi random network (i.e., clustering �1=N). (a) The dis-

tribution of component sizes si, the fraction of nodes in the ith (ranked by

size) connected component in the final consensus state, is plotted as a func-

tion of social environment (with marker sizes proportional si). Colors indi-

cate Ci
f , the clustering coefficient of the ith component. The thick bold line

in the middle separates the two types of social environment function: on the

right we consider flexible social environments, with a single large connected

component with size increasing with increasing a; on the left we consider

inflexible social environments, observing a decrease of the size of the largest

connected component with increasing a, finally leading to its disintegration

into several components of comparable sizes. (b) The sizes of the two largest

connected components, s1 and s2, is plotted versus social environment.

Simulations were conducted on 100 realizations of the network and initial

opinion distribution, with the plotted component sizes estimated as the

means over these realizations. Error bars give the standard deviation of these

sizes across realizations.
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to networks obtained under a configuration model with the

observed final state degree distribution. In contrast, as

observed in Fig. 4(a) the largest connected component in the

hegemonic consensus has small world properties in that the

average path lengths are comparable to independently dis-

tributed random networks but have high clustering coeffi-

cients. The dominant component also consists of nodes with

higher numbers of connections, as is apparent from the

change in cumulative degree distribution shown in Fig. 4(b).

Because these features are qualitatively closer to organized

political or religious movements, which usually have a hier-

archy of leadership and high clustering, we have pointedly

not referred to this structure as a mob. We have not observed

variation in diversity O/N to bring about any significant

change to the above discussed basic properties, while vary-

ing O from 2 to 100.

Another crucial aspect to consider in this model is the

role of initial network topology in transitions between hege-
monic consensus and segregated consensus as the two dis-

tinct final states. Does the variation of the initial clustering

coefficient change the final state? This question has not been

considered in the previous studies of voter models on

coevolving networks, as the previously introduced models

have not treated clustering as a consequence of those models,

even though clustering is one of the essential characteristics

of social networks.13,14,29 In the model considered here, the

formation of a hegemonic consensus state apparently does

not take place in networks with high initial clustering coeffi-

cient. To understand this feature we investigate the evolution

of clustering in this model.

We specify the clustering coefficient of the network, C,
as three times the ratio of the number of loops of length three

to the number of connected triples of nodes, also known as

transitivity.39 Symbols C� and Cf are used here for the initial

clustering at the start of the simulation and the final cluster-

ing at the end of the simulation, respectively. In the Watts-

Strogatz model, for example, the maximum possible initial

clustering Cmax corresponding to the ring topology is

Cmax ¼ 3ðhki�2Þ
4ðhki�1Þ. Therefore, with hki ¼ 4, we would have

Cmax ¼ 0:5 (see, e.g., Ref. 40). The Cmax value is also an

upper bound for the observed Cf . In Fig. 5 we plot the evolu-

tion of different variables of the model from a single simula-

tion of N¼ 1000 nodes as discordant edges are removed.

The social environment of this simulation was set to be flexi-

ble, PðpijÞ ¼ pa
ij, with a ¼ 6:0, in a parameter regime where

we expect formation of a hegemonic consensus state for ini-

tially unclustered networks. When we set C� ¼ 0, the opinion

space does undergo a transition as expected, and we see one

opinion dominating [see Fig. 5(a)]. Correspondingly, there is

no transition in the size of the largest connected component

[see red dotted line in Fig. 5(c)]. For the black curve in Fig.

5, we have set C� ¼ Cmax, and we observe a counter intuitive

and unexpected transition viz. that the largest connected

component starts to disintegrate and become smaller in size

[see Fig. 5(c)] while in opinion space we do not observe

emergence of a single dominant opinion [see Fig. 5(b)]. We

also observe in the lowest panel of Fig. 5 that C saturates to

Cf before reaching the consensus. This is a special feature of

this model and provides an opportunity to study the evolu-

tion of a clustered network topology with opinion formation.

For the case PðpijÞ ¼ pa
ij with a ¼ 6, Cf appears to be well

approximated by a linear function of C�.
We also see in panel (d) of Fig. 5 that the system starts

to slow down, in terms of the time necessary to remove the

next discordant edge, right before the consensus states

emerges. That is, more iterations are required to decrease the

number of discordant edges, possibly indicative of some

form of critical slowing of the system as segregation is

reached. This feature is not as apparent in the red dotted

curve, implying that processes involved in formation of heg-
emonic consensus might not involve critical slowing of the

system. To identify the region of the parameter space where

initial clustering C� plays a dominant role in determining the

final state, we have plotted the values of s1 in Fig. 6 across

the parameter space of a and C�. We observe in Fig. 6 that

FIG. 4. Properties of the largest connected component (hegemonic consen-
sus) for the final state reached for a flexible environment, PðpijÞ ¼ pij, with

a ¼ 6:0 from an initially Erd}os-R�enyi network. (a) Comparisons of average

path length, maximum degree, clustering coefficient and size for different

network sizes, with different markers representing different network sizes

(see the legend). The initial network is G0, with initial clustering close to

zero, while s1 here denotes both the largest connected component in the final

state and its size (as a fraction of the nodes in the network). We observe that

s1 has a significantly higher clustering coefficient (0.2) whereas it has path

length comparable to the initial Erd}os-R�enyi network G0, implying that s1

has small world features. Also, s1 typically has higher kmax (maximum

degree) while its size remains comparable to G0. (b) The cumulative degree

distribution C(k) of the initial network G0 (dashed lines) is compared with

that for s1 (markers), further showing that s1 has nodes with higher degrees.

In its tail, the cumulative degree distribution of s1 appears to approximately

follow a power law as shown by solid grey line of exponent �8 though the

steepness of this line does not preclude other distributions in the tail.
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higher values of initial clustering in the flexible social envi-

ronment regime can induce fragmentation. In Fig. 7 we show

the disintegration of the network into smaller components as

we increase the initial clustering coefficient from 0 to Cmax.

Now that we have briefly illustrated some of the features in

the evolution of clustering in the model, we present a more

systematic analysis of this transition below.

III. PHASE TRANSITIONS

A. Role of social environment in transitions

As discussed above this model shows transition to two

distinct final states. For flexible social environments we have

observed that as a is increased, the largest connected compo-

nent’s size approaches that of the whole network, s1 ! 1

(see Fig. 3). In contrast, for the inflexible social environ-

ments, we have disintegration of the network into several

smaller sized connected components. As we move from

FIG. 6. A phase diagram for s1 (size of the largest connected component)

varying a and C� in both the inflexible and the flexible social environments.

Colors represent the values of s1 (see the color bar). The left panel belongs

to the inflexible social environment regime whereas the right panel belongs

to the flexible social environment regime. Observe the disintegration of the

largest connected components in the flexible social environment regime (the

right panel) for higher values of initial clustering C� (lower values of s1 in

shades of red). For lower values of C� we do not observe any such disinte-

gration (higher values of s1 in shades of blue). In the inflexible regime (the

left panel) we observe that values of a dominate the final outcome of the

simulation. A network of N¼ 1000 nodes and with O ¼ 100 initial opinions

was employed for each a and C�. For visualization, data were interpolated

onto a regular grid by a combination of natural neighbor and spline

interpolation.

FIG. 7. The effect of different initial clustering C� on a network of N¼ 1000

nodes with O¼ 100 initial opinions for flexible social environment PðpijÞ ¼
pa

ij with a ¼ 6. Large initial clustering C� leads to final states with segregated
consensus, contrary to the expected hegemonic consensus for initially

unclustered networks in the same flexible social environment. (a) The distri-

bution of component sizes si, the fraction of nodes in the ith (ranked by size)

connected component in the final consensus state, is plotted as a function of

the initial clustering coefficient, C� (with marker sizes proportional si).

Colors indicate Ci
f , the clustering coefficient of the ith component in the final

state. (b) The sizes of the two largest connected components, s1 and s2, are

plotted versus C�. Simulations were conducted on 100 realizations of the net-

work and initial opinion distribution, with the plotted component sizes esti-

mated as the means over these realizations. Error bars give the standard

deviation of these sizes across realizations.

FIG. 5. The evolution of system variables with decreasing number of dis-

cordant edges. Each variable is plotted at the last time step when that num-

ber of discordant edges, E�, was present in the system. The black line and

panel (b) correspond to simulations starting at the highest possible clustering

coefficient Cmax whereas the red dotted line and panel (a) correspond to sim-

ulations starting at the negligible clustering coefficient obtained with a ran-

dom network of independent edges. In (a) and (b), each color corresponds to

one of the opinions, with width indicating the number of nodes holding that

opinion. The wide width of cyan at the end in (a) represents the formation of

a hegemonic consensus (one large connected component of size comparable

to the initial network). We do not observe a similar transition in (b) even

though the only difference in this simulation is the large initial clustering

coefficient. In (c), we plot s1, the size of the largest connected component.

Observe the abrupt drop of the black line in s1, indicating the disintegration

of the network into smaller components (i.e., segregated consensus). In con-

trast, we do not observe any such transition for the red dotted line, corre-

sponding to the formation of hegemonic consensus. In (d), we show hDti, the

average number of iterations of the system between last-observed times for

each E�, with a substantial increase for the black curve near the end. In (e),

C is the corresponding evolution of the clustering coefficient.
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inflexible to flexible social environments, fewer and fewer

initial opinions survive, with the most extreme case being

where only one dominant opinion survives with formation of

a hegemonic consensus. Here we will attempt to infer from

numerical simulations whether these transitions have a finite

size effect.41 The complexities involved in this model makes

analytical analysis hard, but it is possible to obtain a variety

of details using numerical simulations.

From Fig. 3 we observe that somewhere when the pa-

rameters of the model are in the inflexible social environment

regime there is emergence of smaller sized connected com-

ponents. Hence, we will focus on those transitions which

occur within the parameter setting of the inflexible social

environment, i.e., PðpijÞ ¼ 1� pa
ij. For all of the simulations

below, we have used an Erd}os-R�enyi random network as the

initial network at the start of the simulation. In Fig. 8(a) we

observe multiple transitions in the system when a is varied

from 0.5 to 6.0 for inflexible social environments. The first

transition is visible in the size of s1, where a weak depend-

ence on the size of the system seems to emerge [see inset

Fig. 8(a)]. The data from different system sizes appear to col-

lapse onto a single curve when a small factor N�0:05 is multi-

plied to a. That is, it appears that this transition value of a
has dependence on the size of the system proportional to

N0:05 [see vertical lines in the inset of Fig. 8(a)], and this

transition point would move to infinity in the thermodynamic

limit.

A second transition for finite systems appears to occur

near a ¼ 4:25 where the best fit to the data points changes

from a polynomial fit to power law fit [see Figs. 8(b) and

8(c) and Figs. 8(e) and 8(f)]. All fitting reported here has

been obtained using a least squares routine provided in

SciPy’s optimize package, which uses minpack’s lmdif and

lmder algorithms.42 This transition is more apparent in Fig.

8(d) for the size of the second largest connected component,

s2. In Fig. 8(g), we have plotted the Shannon entropy over

the sizes of the 10 largest components, H ¼
Pi¼10

i¼1 si lnðsiÞ.
Considering only 10 largest components for this calculation

is a close approximation to the total Shannon entropy of the

size distribution in most cases, given the rapid decrease in

the tail of the size distribution. In this figure, the transition

near a ¼ 4:25 is visibly very much apparent as H tends to

saturate and then start to decrease. The polynomial fit in Fig.

8(a) has the following form:

s1 ¼ aa2 þ baþ c if a < 4:25;

s1 � f ðNÞa�2:460:02 if a � 4:25;
(1)

where a � �0:029, b � N0:05260:001 � 1:4, c � N�0:36logðNÞ,
and f(N) is a function dependent on N. A similar analysis for

s2 also yields a polynomial fit

s2 ¼ aa�2:1 þ ba2:1 þ c if a < 4:25;

s2 � f ðNÞa1:4260:12 if a � 4:25;
(2)

where a�N0:0027�1:02, b��2:68�6N�1:54, and c�N1:75,

and again f(N) is a function dependent on N. This analysis

brings out a highly complex dependence of s1 and s2 on sys-

tem size for the transition occurring near a¼4:25. However,

as indicated by the errors to the polynomial fit and power

law fits in Figs. 8(b) and 8(c) and 8(e) and 8(f), a polynomial

fit becomes systematically less erroneous as N is increased.

It remains possible that for large N these multiple transitions

might coalesce into a single continuous transition.

B. Role of network structure in transitions

Social networks are generally known to have higher

clustering.43 The initial definition of global and local cluster-

ing was in the context of social ties.13,14,29,44 In previously

studied coevolving voter models with random rewiring the

clustering tends to decay away to that of independently dis-

tributed edges (�1=N) as the system evolves with

time.1,16–18 In contrast, because the present model reinforces

clustering, we observe non-trivial clustering is sustained

throughout the dynamics, never dropping to near zero (see

Fig. 5).

Such a model provides an opportunity to explore the

influence of the clustering coefficient on transitions between

the formation of a hegemonic consensus and segregated con-
sensus. We are here mainly interested in knowing whether

C�, the initial clustering, can affect the formation of the hege-
monic consensus. We know from the discussion above that if

we set PðpijÞ ¼ pa
ij (flexible social environment) with a ¼ 6

FIG. 8. Variation of s1 (size of largest connected component) and s2 (size of second largest connected component) with a for inflexible social environments,

PðpijÞ ¼ 1� pa
ij. Different shapes and colors of the markers represent networks of different sizes [see legend in (g)]. In (a) we observe multiple transitions in s1

collapse onto a similar curve (inset) for rescaling a by N0:05. A second transition is observed near a ¼ 4:25 [dashed grey vertical lines in (b) and (c)], where a

best fit to the data changes from a polynomial to power law, as indicated by the values of �, the errors between the fitted function and the s1 data points. This

second transition appears to be collocated with a transition in s2 appearing in (d), with an abrupt decreasing of s2 after a ¼ 4:25 (dashed grey vertical line).

Similar to (b) and (c), the best fit to the s2 data changes from a polynomial to power law [see (e) and (f)]. In (g), we plot the Shanon entropy H of the 10 largest

connected components versus a, observing that H tends to saturate near a ¼ 4:25 (dashed grey vertical line) and decreases for higher a.
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and an initial random network of independently distributed

edges (or network with negligible clustering coefficient), we

will get a hegemonic consensus as the final state, with the

size of the largest connected component s1 � 1. If we instead

vary the initial clustering C� of the system, employing a

Watts-Strogatz model for the initial network, we observe (in

the inset of Fig. 9) that with increasing initial clustering the

largest connected component tends to disintegrate into

smaller sizes. For even higher C�, rather then having only

one dominant connected component of size s1 � 1, we get

multiple smaller similarly-sized connected components, i.e.,

segregated consensus occurs in place of hegemonic consen-
sus. So, even in the case of a highly flexible social environ-

ment (PðpijÞ ¼ pa
ij, a ¼ 6), we can still get disintegration and

no single dominant opinion if the initial clustering of the net-

work is high enough.

To get an estimate on the critical values C� where we

could start observing the disintegration in the consensus

state, we further analyze the results obtained in Fig. 9. We

observe that if we multiply C� by a factor of logðNÞ, the data

collapse onto one curve (see Fig. 9), implying that transition

seems to be occurring at C� � 1=logðNÞ. If we plot the tran-

sition scales 1
logðNÞ (as done in the inset of Fig. 9 by means of

vertical lines), we observe drop off in the values of s1 starts

near these scales. The form of the function fitted to the data

in Fig. 9 is as follows:

s1 �
1 if C� �

1

logðNÞ

aCc� expð�kC�Þ if C� >
1

logðNÞ ;

8>>><
>>>:

where, k�N�0:3760:018, a�N�0:9560:07, and c �N�0:1360:012.

Though this functional form has a complex dependence on

system size, the critical values C� appear to be varying as
1

logðNÞ. Hence, this transition would exist in a finite network

and the critical value of C� would tend to zero in the thermo-

dynamic limit.

A further analysis of the connected components formed

in segregated consensus shows that their sizes are approxi-

mately power law distributed. In Fig. 10(b) we have plotted

the slope of the line fitted to the sizes of connected compo-

nents and in Fig. 10(a) there is an illustration of the same for

N¼ 1500 nodes. As C� increases, the slope becomes smaller

and the error bar to the fit is reduced, indicating that sizes of

the connected components are becoming comparable as C� is

increased, i.e., similar sized contrarian social groups or cults
are formed. Importantly, we also note from Fig. 7 that these

similar sized components generally have very high clustering.

IV. CONCLUSIONS

We have considered a model for opinion formation on

coevolving networks with two additional attributes: social

environment, modeled by a distribution of susceptibilities to

opinion change, and a path-length-based preference for

rewiring that reinforces social clustering. The social cluster-

ing component intrinsically links the topological evolution

of the network with the processes involved in collective

opinion formation and vice versa.

We observed that two qualitatively distinct final states

can emerge in this model. In hegemonic consensus, a domi-

nating large connected component with each node within the

component having the same opinion. Importantly, this domi-

nating large connected component also maintains nontrivial

local clustering. Such clustering contrasts with the properties

of previously studied models, as random rewiring in those

models leads to non-clustered random networks as the final

consensus state. The other outcome that emerges under pa-

rameter settings of inflexible social environments is the dis-

integration of the network and formation of small isolated

components consisting of nodes holding the same opinion.

As a feature qualitatively similar to the segregation of indi-

viduals in a society, we have named this final state a segre-
gated consensus.

A fundamentally key aspect we have studied using the

features of this model is the role of clustering in the coevolv-

ing network/opinion process since the clustering of the net-

work is continually reinforced by the preference to rewire to

FIG. 10. The sizes of different connected components in the consensus state

for networks of N¼ 1500 nodes. (a) Sizes of connected components v. their

ordered (by decreasing size) indices. As initial clustering of the network C�
(color bar) is increased, there is emergence of smaller components of com-

parable sizes. (b) The values of the exponents, b0, of the slopes fitted to the

sizes of components in the final consensus state v. indices at each value of

C� [the thick red line in (a) is an example for C� ¼ 0:5]. In (b), observe the

decrease in the slope and error bars for higher initial clusterings, indicating

the formation of several components of comparable sizes.

FIG. 9. Variation in the size of the largest connected component s1 with ini-

tial clustering coefficient for flexible social environment, PðpijÞ ¼ pa
ij, with

a ¼ 6. When logðNÞ is multiplied to C� the data for different system sizes

appears to collapse onto a single curve. The inset curve shows the fits to data

without scaling, with vertical lines 1
logðNÞ indicating the scales of the transi-

tion points.
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nodes at smaller path length in this model. We observed that

if the initial network has clustering above a critical value,

then even in a flexible social environment we get segregated
consensus as the final state. This is contrary to what happens

with a network having initially negligible clustering (as in a

random network of independently distributed edges).

Injection of this additional attribute to the model makes the

dynamics of this system richer and more relevant to social

networks, but at the price of making any analytical study

much more difficult than for other models, such as discussed

in Refs. 16–23.

One can observe similar features in the process of opinion

formation in society, for example, hegemonic consensus may

be analogous to situations in multi-party democratic elections

where one party wins by a landslide. In contrast, some hung

elections may be similar to a segregated consensus.45 A simi-

lar situation can also occur when choices are made on a prod-

uct among many available brands, with monopoly of one

brand over the product being a hegemonic consensus and seg-
regated consensus being when there is more even competition

over a product between different brands.46

Further analysis of the transitions in numerical simula-

tions of different sizes has indicated complex and weak de-

pendence on system size. In particular, it is possible that the

multiple transitions induced by variations in social environ-

ment might coalesce into a single continuous transition for

large systems. Meanwhile, the scaling of the transition

induced by clustering in the initial network indicates that it

may only exist for a finite system. Importantly, because this

latter transition occurs for initial clustering �1=logðNÞ (cf.,

independently distributed edges giving clustering �1=N), we

note that one should be careful making any claims about the

applicability of coevolving network models that lack rein-

forcement of clustering to real-world network situations that

have non-trivial transitivity.
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