21 research outputs found

    Enhanced recovery of heavy oil using a catalytic process

    Get PDF
    Oil is a major source of energy around the world. With the decline of light conventional oil, more attention is being paid to heavy oil and bitumen, as a good alternative to light oil for energy supplies. Heavy crude oils have a tendency to have a higher concentration of metals and several other elements such as sulfur and nitrogen, and extraction of these heavy oils requires more effort and cost. The Toe-to-heel Air Injection catalytic upgrading process In-situ (THAI-CAPRI) is an integrated process which includes recovery and upgrading of heavy oil and bitumen using an air injection process, and horizontal injector and producer wells. Since the process works through a short distance displacement technique, the produced oil flows easily toward the horizontal producer well. This direct mobilized oil production and short distance are the major properties of this method which lead to robust operational stability and high oil recovery. This technique gives the possibility of a higher recovery percentage and lowers environmental effects compared to other technologies like steam based techniques. A catalyst plays a crucial role in the THAI-CAPRI technique to be successfully conducted. However, heavy coke can be formed as a result of the thermal cracking of heavy oil occurring in the THAI-CAPRI process, and a catalyst resistant enough to use in CAPRI needs to be developed. Therefore, there is a need to understand the pore structure to achieve a high catalyst quality, to obtain a structure that directly affects the fluid behaviour within a disordered porous material. In this study, novel experimental techniques were used to obtain greater accuracy results, for the information obtained from gas adsorption curves by using a combination of data obtained for two adsorptives, namely nitrogen and argon, both before and after mercury porosimetry. This new method allows studying the effect of pore-pore co-operative during an adsorption process, which significantly affects the accuracy of the pore size distributions, obtained for porous solids. A comparison, between the results obtained from the characterisation of a mixed silica-alumina pellet and those obtained from pure silica and alumina catalysts, were presented to study the effects of surface chemistry on the different wetting properties of adsorbates. The pore networks within pellets invaded by mercury following mercury porosimetry have been imaged by computerized X-ray tomography (CXT). It was noticed that the silica-alumina catalyst had a hierarchical internal structure, similar to that for blood vessels in the body. To validate the findings of the pore geometry characterisation obtained from the new method, several techniques, such as cryoporometry, gas sorption isotherms, and mercury intrusion experiments, were considered. Further, a novel well design consisting of two horizontal injectors and two horizontal producers was used in different well configurations, to investigate the potential for improved efficiency of the THAI process on the heavy oil recovery. A 3D dimensional simulation model, employing the CMG-STARS simulator, was applied in this simulation. Two horizontal injectors and producers were designed in this project, instead of horizontal injector and producer were used in the Greaves model (the base case model), to investigate the effect of the extra injector and producer on the performance of the THAI process. It was found that the locations of the well injections and the well productions significantly affected the oil production. For the study of the effectiveness of the catalysts in the oil upgrading process, the CAPRI technique has been simulated to investigate the effect of several parameters, such as catalyst packing porosity, the thickness of the catalyst layer and hydrogen to air ratio, on the performance of the CAPRI process. The TC3 model used by Rabiu Ado (2017), which was the same model used in the experimental study of Greaves et al. (2012), was also used in this study. The Houdry catalyst characterised by the experimental work was placed around the horizontal producer in this simulation

    The Effect of Sodium Hydroxide Solutions with Different Ph on the Corrosion Of Iron Alloy (C1010) In Industrial Water

    Get PDF
     The effect of increasing pH value in the corrosion of iron alloy type (C1010) was studied in the presence of different pH solutions of sodium hydroxide dissolved in industrial water at 35ËšC  and it was found that the corrosion rate of iron alloy was less at pH of 9.5 . This result was proved by measuring some thermodynamic parameters such as corrosion current and covered surface area that pertain to corrosion using weight loss electrical (Tafel plot ) methods . Also the effect of temperature on the rate of corrosion at ( 25ËšC , 35ËšC and 45ËšC ) at different pH was studied and it was found that the rate of corrosion is increased with increasing the temperature at the same pH

    ROBUST HYBRID FEATURES BASED TEXT INDEPENDENT SPEAKER IDENTIFICATION SYSTEM OVER NOISY ADDITIVE CHANNEL

    Get PDF
    Robustness of speaker identification systems over additive noise is crucial for real-world applications. In this paper, two robust features named Power Normalized Cepstral Coefficients (PNCC) and Gammatone Frequency Cepstral Coefficients (GFCC) are combined together to improve the robustness of speaker identification system over different types of noise. Universal Background Model Gaussian Mixture Model (UBM-GMM) is used as a feature matching and a classifier to identify the claim speakers. Evaluation results show that the proposed hybrid feature improves the performance of identification system when compared to conventional features over most types of noise and different signal-to-noise ratios

    Enhancement of Heat Transfer using Aluminum Oxide Nanofluid on Smooth and Finned Surfaces with COMSOL Multiphysics Simulation in Turbulent Flow

    Get PDF
    Both surface extension and nanofluid methods were used to enhance the heat transfer in a double pipe heat exchanger under turbulent flow conditions. Aluminum oxide nanoparticles were used with different concentrations(0.6-3 g/l)in hot water to increase the heat transfer rate on smooth tube and circular fins tube for a range of Reynolds number4240-19790. The simulation was also performed to predict the heat transfer coefficient and temperature profile for selected conditions in which COMSOL Multiphysics is used. The experimental results revealed that the heat transfer enhancement by both circular fin and nanofluid exhibited an increasing trend with Reynolds number and nanofluid concentration. The conjoint effect of Al2O3 of 3 g/l concentration and circular fin provided largest heat transfer enhancement of 53% for the highest Re investigated. Simulation results showed reasonable agreement with the experimental values of heat transfer coefficient. The simulation showed that the presence of nanofluid on finned surface influenced the temperature profile indicating the increased heat transfer rate

    Determination of pore network accessibility in hierarchical porous solids

    Get PDF
    This paper validates the hypothesis that the supposedly non-specific adsorbates nitrogen and argon wet heavy metals differently, and shows how this unexpected effect can be actively utilised to deliver information on pore inter-connectivity. To explore surface chemistry influences on differential adsorbate wetting, new findings for a mixed silica-alumina material were compared with data for pure silica and alumina materials. The new structural characterisation described can determine the distribution of the particular sub-set of meso-and micro-pores that connect directly to macropores that entrap mercury following porosimetry, as mapped by computerised X-ray tomography. Hence, it elucidates the spatial organization of the network and measures the improved accessibility to smaller pores provided by larger pores. It was shown that the silica-alumina pellets have a hierarchical pore-size arrangement, similar to the optimal blood vessel network architecture in animals. The network architecture derived from the new method has been independently validated using complementary gas sorption scanning curves, integrated mercury porosimetry, and NMR cryoporometry. It has also been shown that, rather than hindering interpretation of characterisation data, emergent effects for networks associated with these techniques can be marshalled to enable detailed assessment of the pore structures of complex, disordered solids

    Determination of pore network accessibility in hierarchical porous solids

    Get PDF
    This paper validates the hypothesis that the supposedly non-specific adsorbates nitrogen and argon wet heavy metals differently, and shows how this unexpected effect can be actively utilised to deliver information on pore inter-connectivity. To explore surface chemistry influences on differential adsorbate wetting, new findings for a mixed silica-alumina material were compared with data for pure silica and alumina materials. The new structural characterisation described can determine the distribution of the particular sub-set of meso-and micro-pores that connect directly to macropores that entrap mercury following porosimetry, as mapped by computerised X-ray tomography. Hence, it elucidates the spatial organization of the network and measures the improved accessibility to smaller pores provided by larger pores. It was shown that the silica-alumina pellets have a hierarchical pore-size arrangement, similar to the optimal blood vessel network architecture in animals. The network architecture derived from the new method has been independently validated using complementary gas sorption scanning curves, integrated mercury porosimetry, and NMR cryoporometry. It has also been shown that, rather than hindering interpretation of characterisation data, emergent effects for networks associated with these techniques can be marshalled to enable detailed assessment of the pore structures of complex, disordered solids

    Efficient and sustainable remediation of refinery wastewater using electrocoagulation and advanced oxidation techniques

    Get PDF
    Effluent wastewater from industrial processes needs to be properly treated before being discharged into the environment. Conventional procedures for handling this wastewater can be problematic due to the presence of toxic elements, time constraints, and complexity. However, a new electrochemical procedure has been developed as an effective method for remediation. In a recent study, refinery wastewater was successfully treated using an electrochemical technique combined with ultrasonic irradiation and photocatalysis. The study found that electrocoagulation, which uses cheap and recyclable metal electrodes, was a simple, efficient, practical, and cost-effective way to handle refinery wastewater. Various parameters were investigated, including electrode metals, operating time, applied voltage, pH, inter-electrode gap, and temperature. The aim was to determine the optimal configuration for pollutant removal. The study also focused on the synergistic effects of combining electrocoagulation and photocatalysis to improve the efficiency of contaminant removal in oily wastewater. By integrating these two treatment technologies, the researchers aimed to enhance pollutant removal rates, energy efficiency, and overall system performance. The research provided valuable insights into the feasibility, optimization parameters, and applicability of the electrocoagulation-photocatalysis process for remediating organic contaminants in oily wastewater industrial effluents. The results showed that electrocoagulation, especially when combined with ultrasonic irradiation and TiO2 photocatalysis, was highly effective in pollutant removal within a short timeframe. These findings support the implementation of this procedure for remediating most industrial wastewater.In conclusion, the study contributes to the development of more effective and sustainable water treatment strategies. The electrocoagulation-photocatalysis process shows promise in addressing the remediation of organic contaminants in oily wastewater from industrial processes

    Detection of the delayed condensation effect and determination of its impact on the accuracy of gas adsorption pore size distributions

    Get PDF
    Macroscopic, highly disordered, mesoporous materials present a continuing challenge for accurate pore structure characterization. The typical macroscopic variation in local average pore space descriptors means that methods capable of delivering statistically representative characterizations are required. Gas adsorption is a representative but indirect method, normally requiring assumptions about the correct model for data analysis. In this work we present a novel method to both expand the range, and obtain greater accuracy, for the information obtained from the main boundary adsorption isotherms by using a combination of data obtained for two adsorptives, namely nitrogen and argon, both before and after mercury porosimetry. The method makes use of the fact that nitrogen and argon apparently ‘see’ a different pore geometry following mercury entrapment, with argon, relatively, ‘ignoring’ new metal surfaces produced by mercury porosimetry. The new method permits the study of network and pore–pore co-operative effects during adsorption that substantially affect the accuracy of the characteristic parameters, such as modal pore size, obtained for disordered materials. These effects have been explicitly quantified, for a typical sol-gel silica catalyst support material as a case study. The technique allowed the large discrepancies between modal pore sizes obtained from standard gas adsorption and mercury thermoporometry methods to be attributed to the network-based delayed condensation effect, rather than spinodal adsorption. Once the network-based delayed condensation effect had been accounted for, the simple cylindrical pore model and macroscopic thermodynamic Kelvin-Cohan equation were then found sufficient to accurately describe adsorption in the material studied, rather than needing a more complex microscopic theory. Hence, for disordered mesoporous solids, a proper account of inter-pore interactions is more important than that of intra-pore adsorbate density distribution, to obtain accurate pore size distributions

    Environmental Microcystin Targets the Microbiome and Increases the Risk of Intestinal Inflammatory Pathology via NOX2 in Underlying Murine Model of Nonalcoholic Fatty Liver Disease

    Get PDF
    With increased climate change pressures likely to influence harmful algal blooms, exposure to microcystin, a known hepatotoxin and a byproduct of cyanobacterial blooms can be a risk factor for NAFLD associated comorbidities. Using both in vivo and in vitro experiments we show that microcystin exposure in NAFLD mice cause rapid alteration of gut microbiome, rise in bacterial genus known for mediating gut inflammation and lactate production. Changes in the microbiome were strongly associated with inflammatory pathology in the intestine, gut leaching, tight junction protein alterations and increased oxidative tyrosyl radicals. Increased lactate producing bacteria from the altered microbiome was associated with increased NOX-2, an NADPH oxidase isoform. Activationof NOX2 caused inflammasome activation as shown by NLRP3/ASCII and NLRP3/Casp-1 colocalizations in these cells while use of mice lacking a crucial NOX2 component attenuated inflammatory pathology and redox changes. Mechanistically, NOX2 mediated peroxynitrite species were primary to inflammasome activation and release of inflammatory mediators. Thus, in conclusion, microcystin exposure in NAFLD could significantly alter intestinal pathology especially by the effects on microbiome and resultant redox status thus advancing our understanding of the co-existence of NAFLD-linked inflammatory bowel disease phenotypes in the clinic

    Enhanced recovery of heavy oil using a catalytic process

    No full text
    Oil is a major source of energy around the world. With the decline of light conventional oil, more attention is being paid to heavy oil and bitumen, as a good alternative to light oil for energy supplies. Heavy crude oils have a tendency to have a higher concentration of metals and several other elements such as sulfur and nitrogen, and extraction of these heavy oils requires more effort and cost. The Toe-to-heel Air Injection catalytic upgrading process In-situ (THAI-CAPRI) is an integrated process which includes recovery and upgrading of heavy oil and bitumen using an air injection process, and horizontal injector and producer wells. Since the process works through a short distance displacement technique, the produced oil flows easily toward the horizontal producer well. This direct mobilized oil production and short distance are the major properties of this method which lead to robust operational stability and high oil recovery. This technique gives the possibility of a higher recovery percentage and lowers environmental effects compared to other technologies like steam based techniques. A catalyst plays a crucial role in the THAI-CAPRI technique to be successfully conducted. However, heavy coke can be formed as a result of the thermal cracking of heavy oil occurring in the THAI-CAPRI process, and a catalyst resistant enough to use in CAPRI needs to be developed. Therefore, there is a need to understand the pore structure to achieve a high catalyst quality, to obtain a structure that directly affects the fluid behaviour within a disordered porous material. In this study, novel experimental techniques were used to obtain greater accuracy results, for the information obtained from gas adsorption curves by using a combination of data obtained for two adsorptives, namely nitrogen and argon, both before and after mercury porosimetry. This new method allows studying the effect of pore-pore co-operative during an adsorption process, which significantly affects the accuracy of the pore size distributions, obtained for porous solids. A comparison, between the results obtained from the characterisation of a mixed silica-alumina pellet and those obtained from pure silica and alumina catalysts, were presented to study the effects of surface chemistry on the different wetting properties of adsorbates. The pore networks within pellets invaded by mercury following mercury porosimetry have been imaged by computerized X-ray tomography (CXT). It was noticed that the silica-alumina catalyst had a hierarchical internal structure, similar to that for blood vessels in the body. To validate the findings of the pore geometry characterisation obtained from the new method, several techniques, such as cryoporometry, gas sorption isotherms, and mercury intrusion experiments, were considered. Further, a novel well design consisting of two horizontal injectors and two horizontal producers was used in different well configurations, to investigate the potential for improved efficiency of the THAI process on the heavy oil recovery. A 3D dimensional simulation model, employing the CMG-STARS simulator, was applied in this simulation. Two horizontal injectors and producers were designed in this project, instead of horizontal injector and producer were used in the Greaves model (the base case model), to investigate the effect of the extra injector and producer on the performance of the THAI process. It was found that the locations of the well injections and the well productions significantly affected the oil production. For the study of the effectiveness of the catalysts in the oil upgrading process, the CAPRI technique has been simulated to investigate the effect of several parameters, such as catalyst packing porosity, the thickness of the catalyst layer and hydrogen to air ratio, on the performance of the CAPRI process. The TC3 model used by Rabiu Ado (2017), which was the same model used in the experimental study of Greaves et al. (2012), was also used in this study. The Houdry catalyst characterised by the experimental work was placed around the horizontal producer in this simulation
    corecore