23 research outputs found

    Statistical validation of Aeolus L2A particle backscatter coefficient retrievals over ACTRIS/EARLINET stations on the Iberian Peninsula

    Get PDF
    The Global Observing System (GOS) has encountered some limitations due to a lack of worldwide real-time wind measurements. In this context, the European Space Agency (ESA) has developed the Aeolus satellite mission, based on the ALADIN (Atmospheric Laser Doppler Instrument) Doppler wind lidar; this mission aims to obtain near-real-time wind retrievals at the global scale. As spin-off products, the instrument retrieves aerosol optical properties such as particle backscatter and extinction coefficients. In this work, a validation of Aeolus reprocessed (baseline 10) co-polar backscatter coefficients ( part Aeolus) is presented through an intercomparison with analogous ground-based measurements taken at the ACTRIS (Aerosols, Clouds and Trace gases Research InfraStructure Network)/EARLINET (European Aerosol Research Lidar Network) stations of Granada (Spain), Évora (Portugal) and Barcelona (Spain) over the period from July 2019 until October 2020. Case studies are first presented, followed by a statistical analysis. The stations are located in a hot spot between Africa and the rest of Europe, which guarantees a variety of aerosol types, from mineral dust layers to continental/anthropogenic aerosol, and allows us to test Aeolus performance under different scenarios. The so called Aeolus-like profiles ( part Aeolus like;355) are obtained from total particle backscatter coefficient and linear particle depolarization ratio ( part linear) profiles at 355 and 532 nm measured from the surface, through a thorough bibliographic review of dual-polarization measurements for relevant aerosol types. Finally, the study proposes a relation for the spectral conversion of part linear, which is implemented in the Aeolus-like profile calculation. The statistical results show the ability of the satellite to detect and characterize significant aerosol layers under cloud-free conditions, along with the surface effect on the lowermost measurements, which causes the satellite to largely overestimate copolar backscatter coefficients. Finally, the Aeolus standard correct algorithm middle bin (SCAmb) shows a better agreement with ground-based measurements than the standard correct algorithm (SCA), which tends to retrieve negative and meaningless coefficients in the clear troposphere. The implementation of Aeolus quality flags entails a vast reduction in the number of measurements available for comparison, which affects the statistical significance of the results

    Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona

    Get PDF
    Aerosols are one of the most important pollutants in the atmosphere and have been monitored for the past few decades by remote sensing and in situ observation platforms to assess the effectiveness of government-managed reduction emission policies and assess their impact on the radiative budget of the Earth's atmosphere. In fact, aerosols can directly modulate incoming short-wave solar radiation and outgoing long-wave radiation and indirectly influence cloud formation, lifetime, and precipitation. In this study, we quantitatively evaluated long-term temporal trends and seasonal variability from a climatological point of view of the optical and microphysical properties of atmospheric particulate matter at the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, over the past 17 years, through a synergy of lidar, sun photometer, and in situ concentration measurements. Interannual temporal changes in aerosol optical and microphysical properties are evaluated through the seasonal Mann–Kendall test. Long-term trends in the optical depth of the recovered aerosol; the Ångström exponent (AE); and the concentrations of PM10, PM2.5, and PM1 reveal that emission reduction policies implemented in the past decades were effective in improving air quality, with consistent drops in PM concentrations and optical depth of aerosols. The seasonal analysis of the 17-year average vertically resolved aerosol profiles obtained from lidar observations shows that during summer the aerosol layer can be found up to an altitude of 5 km, after a sharp decay in the first kilometer. In contrast, during the other seasons, the backscatter profiles fit a pronounced exponential decay well with a well-defined scale height. Long-range transport, especially dust outbreaks from the Sahara, is likely to occur throughout the year. During winter, the dust aerosol layers are floating above the boundary layer, while during the other seasons they can penetrate the layer. The analysis also revealed that intense, short-duration pollution events during winter, associated with dust outbreaks, have become more frequent and intense since 2016. This study sheds some light on the meteorological processes and conditions that can lead to the formation of haze and helps decision makers adopt mitigation strategies to preserve large metropolitan areas in the Mediterranean basin.This research has been supported by the European Union through NextgenerationEU funds and by the following projects along the years: FP5 EARLINET project (grant no. ID EVR1-CT-1999-40003), FP6 EARLINET-ASOS (ID: 25991), FP7 ACTRIS (ID: 262254), H2020 ACTRIS-2 (ID: 654109), ACTRIS-PPP (ID: 739530), ACTRIS IMP (ID: 871115) and ATMO-ACCESS (ID: 101008004), projects of the Spanish National Research programs (grant nos. TIC 431/93, AMB96-1144-C02-01, REN2000-1907-CE, REN2000-1754- C02-02/CLI, REN2003-09753-C02-C02/CLI, REN2003-09753- C02-C CGL2008-01330-E/CLI 02/CLI, REN2002-12784-E, CGL2005-5131-E, CGL2006-27108-E/CLI, CGL2006-26149- E/CLI, CGL2007-28871-/CLI, CTM2006-27154-E/TECNO, TEC2006-07850/TCM, TEC2009-09106, TEC2012-34575, TEC2015-63832-P and PID2019-103886RB-I00), the project of the Catalan Regional Government IMMPACTE, and the ESA project (grant no. 21487/08/NL/HE)Peer ReviewedPostprint (published version

    Ground/space, passive/active remote sensing observations coupled with particle dispersion modelling to understand the inter-continental transport of wildfire smoke plumes

    Get PDF
    During the 2017 record-breaking burning season in Canada/United States, intense wild fires raged during the first week of September in the Pacific northwestern region (British Columbia, Alberta, Washington, Oregon, Idaho, Montana and northern California) burning mostly temperate coniferous forests. The heavy loads of smoke particles emitted in the atmosphere reached the Iberian Peninsula (IP) a few days later on 7 and 8 September. Satellite imagery allows to identify two main smoke clouds emitted during two different periods that were injected and transported in the atmosphere at several altitude levels. Columnar properties on 7 and 8 September at two Aerosol Robotic Network (AERONET) mid-altitude, background sites in northern and southern Spain are: aerosol optical depth (AOD) at 440 nm up to 0.62, Ångström exponent of 1.6–1.7, large dominance of small particles (fine mode fraction >0.88), low absorption AOD at 440 nm (0.98). Profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) show the presence of smoke particles in the stratosphere during the transport, whereas the smoke is only observed in the troposphere at its arrival over the IP. Portuguese and Spanish ground lidar stations from the European Aerosol Research Lidar Network/Aerosols, Clouds, and Trace gases Research InfraStructure Network (EARLINET/ACTRIS) and the Micro-Pulse Lidar NETwork (MPLNET) reveal smoke plumes with different properties: particle depolarization ratio and color ratio, respectively, of 0.05 and 2.5 in the mid troposphere (5–9 km) and of 0.10 and 3.0 in the upper troposphere (10–13 km). In the mid troposphere the particle depolarization ratio does not seem time-dependent during the transport whereas the color ratio seems to increase (larger particles sediment first). To analyze the horizontal and vertical transport of the smoke from its origin to the IP, particle dispersion modelling is performed with the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) parameterized with satellite-derived biomass burning emission estimates from the Global Fire Assimilation System (GFAS) of the Copernicus Atmosphere Monitoring Service (CAMS). Three compounds are simulated: carbon monoxide, black carbon and organic carbon. The results show that the first smoke plume which travels slowly reaches rapidly (~1 day) the upper troposphere and lower stratosphere (UTLS) but also shows evidence of large scale horizontal dispersion, while the second plume, entrained by strong subtropical jets, reaches the upper troposphere much slower (~2.5 days). Observations and dispersion modelling all together suggest that particle depolarization properties are enhanced during their vertical transport from the mid to the upper troposphere.Spanish groups acknowledge the Spanish Ministry of Economy and Competitivity (MINECO) (ref. CGL2013-45410-R, CGL2014-52877-R, CGL2014-55230-R, TEC2015-63832-P, CGL2015-73250-JIN, CGL2016-81092-R and CGL2017-85344-R)European Union through H2020 programme ACTRIS-2, grant 654109European Union through H2020 programme EUNADICS-AV, grant 723986European Union through H2020 programme GRASP-ACE, grant 77834

    Contribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean

    Get PDF
    In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multiintrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms ofdust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.Published4698-47114A. Clima e OceaniJCR Journalrestricte

    Early Diagnosis of Vegetation Health From High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical Relationships and Radiative Transfer Modelling

    Get PDF
    [Purpose of Review] We provide a comprehensive review of the empirical and modelling approaches used to quantify the radiation–vegetation interactions related to vegetation temperature, leaf optical properties linked to pigment absorption and chlorophyll fluorescence emission, and of their capability to monitor vegetation health. Part 1 provides an overview of the main physiological indicators (PIs) applied in remote sensing to detect alterations in plant functioning linked to vegetation diseases and decline processes. Part 2 reviews the recent advances in the development of quantitative methods to assess PI through hyperspectral and thermal images.[Recent Findings] In recent years, the availability of high-resolution hyperspectral and thermal images has increased due to the extraordinary progress made in sensor technology, including the miniaturization of advanced cameras designed for unmanned aerial vehicle (UAV) systems and lightweight aircrafts. This technological revolution has contributed to the wider use of hyperspectral imaging sensors by the scientific community and industry; it has led to better modelling and understanding of the sensitivity of different ranges of the electromagnetic spectrum to detect biophysical alterations used as early warning indicators of vegetation health.[Summary] The review deals with the capability of PIs such as vegetation temperature, chlorophyll fluorescence, photosynthetic energy downregulation and photosynthetic pigments detected through remote sensing to monitor the early responses of plants to different stressors. Various methods for the detection of PI alterations have recently been proposed and validated to monitor vegetation health. The greatest challenges for the remote sensing community today are (i) the availability of high spatial, spectral and temporal resolution image data; (ii) the empirical validation of radiation–vegetation interactions; (iii) the upscaling of physiological alterations from the leaf to the canopy, mainly in complex heterogeneous vegetation landscapes; and (iv) the temporal dynamics of the PIs and the interaction between physiological changes.The authors received funding provided by the FluorFLIGHT (GGR801) Marie Curie Fellowship, the QUERCUSAT and ESPECTRAMED projects (Spanish Ministry of Economy and Competitiveness), the Academy of Finland (grants 266152, 317387) and the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P.Peer reviewe

    Analysis of atmospheric aerosol properties using lidar measurements and their impact on radiative budget in Barcelona over the past 20 years

    Get PDF
    Aerosols are significant atmospheric constituents that modulate radiation and cloud processes. We evaluated 17-year aerosol profile trends in Barcelona, Spain, from lidar measurements. In summer aerosol reaches 5 km, while in the other seasons it exhibits clear exponential decay. Sahara dust transport affects all seasons, with winter layers above and others penetrating the boundary layer. This study informs the formation of haze and urban preservation strategies in the Mediterranean. The analysis puts in evidence that the averaged net radiative effect is of cooling at both surface level and top of the atmosphere.This work has been made possible through the efforts of many people, whom it would be too long to mention, and the funding of many grants through the years, in particular European projects of different framework programmes (FP5 EARLINET project (ID EVR1-CT-1999-40003), FP6 EARLINET-ASOS (ID: 25991), FP7 ACTRIS (ID: 262254), H2020 ACTRIS-2 (ID: 654109), ACTRIS-PPP (ID: 739530), ACTRIS IMP (ID: 871115) and ATMO-ACCESS (ID: 101008004)), projects of the Spanish National Research Programmes (refs. TIC 431/93, AMB96-1144-C02-01, REN2000-1907-CE, REN2000-1754-C02-02 / CLI, REN2003-09753-C02-C02 / CLI, REN2003-09753-C02-C CGL2008- 01330-E/CLI 02 / CLI, REN2002-12784-E, CGL2005-5131-E, CGL2006-27108-E/CLI, CGL2006-26149-E/CLI, CGL2007-28871-/CLI, CTM2006-27154-E/TECNO, TEC2006-07850/TCM, TEC2009-09106, TEC2012-34575, TEC2015-63832-P and PID2019-103886RB-I00), the project of the Catalan Regional Government IMMPACTE, and the ESA project No. nº 21487/08/NL/HE. The support of the European Union through NextGenerationEU funds is also gratefully acknowledged.Peer ReviewedPostprint (author's final draft

    Statistical Intercomparison of Aeolus B10 SCA and SCAmb Backscatter Coefficient with Ground-Based Measurements of ACTRIS/EARLINET Stations in South-Western Europe

    No full text
    In this work, we perform an intercomparison of Aeolus reprocessed B10 (baseline 10) SCA (Standard Correct Algorithm) and SCAmb (Standard Correct Algorithm middle bin) co-polar backscatter coefficients ( ) with analogous ground-based measurements from the ACTRIS/EARLINET stations of Granada (Spain, 24 matching overpasses), Évora (Portugal, 15 overpasses) and Barcelona (Spain, 16 overpasses). Ground-based total particle backscatter coefficient is converted into Aeolus-like profiles ( ,355 ) through the linear particle depolarization ratio at 355 nm ( ,355 ) and a thorough bibliographic review of dual-polarization measurements for relevant aerosol types. A relation for the spectral conversion of is proposed

    VERTICALLY-RESOLVED CHARACTERIZATION OF THE FEBRUARY 2016 EXCEPTIONAL SAHARAN DUST EPISODE OVER THE IBERIAN PENINSULA BY FOUR EARLINET STATIONS

    No full text
    An unusual Saharan dust outbreak occurred on 20-24 February 2016 over the Iberian Peninsula. This work focuses on the particle vertical distribution investigated at four EARLINET AERONET stations: Granada, Évora, Burjassot and Barcelona. This event was exceptional because: (i) Saharan dust outbreaks over the Iberian Peninsula are atypical during wintertime,(ii) the aerosol optical depth reached high values (up to 0.87 at 500 nm over Granada), and (iii) the dust vertical extension was confined to low altitudes
    corecore