15 research outputs found

    Clock gene Per2 as a controller of liver carcinogenesis

    Get PDF
    Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression

    Critical cholangiocarcinogenesis control by cryptochrome clock genes

    Get PDF
    A coordinated network of molecular circadian clocks in individual cells generates 24-hour rhythms in liver metabolism and proliferation. Circadian disruption through chronic jet lag or Per2 clock gene mutation was shown to accelerate hepatocarcinoma development in mice. Since divergent effects were reported for clock genes Per and Cry regarding xenobiotic toxicity, we questioned the role of Cry1 and Cry2 in liver carcinogenesis. Male WT and Cry1-/-Cry2-/- mice (C57Bl/6 background) were chronically exposed to diethylnitrosamine (DEN) at ZT11. Rest-activity and body temperature rhythms were monitored using an implanted radiotransmitter. Serum aspartate and alanine aminotransferases (AST, ALT) were determined on four occasions during the progression stage. After 7 months, serum alkaline phosphatases (ALP) were determined, and livers were sampled for microscopic tumor nodule counting and histopathology. Five months after initiation of DEN treatment, we found that Cry1-/-Cry2-/- mice developed severe liver dysplasia, as evident from the increased AST, ALT and ALP levels, as compared to WT mice. DEN exposure induced primary liver cancers in nearly fivefold as many Cry1-/-Cry2-/- mice as compared to WT mice (p= 0.01). Microscopic study revealed no difference in the average number of hepatocarcinomas and a nearly 8-fold increase in the average number of cholangiocarcinomas in Cry1-/-Cry2-/- mice, as compared to WT mice. The study validated the hypothesis that molecular circadian clock disruption dramatically increased chemically-induced liver carcinogenesis. In addition, the pronounced shift towards cholangiocarcinoma in DEN exposed Cry1-/-Cry2-/- mice revealed a critical role of the Cry clock genes in bile duct carcinogenesis. This article is protected by copyright. All rights reserved

    Rôle de l’horloge circadienne dans la cancérisation hépatique expérimentale et sa prévention

    No full text
    The International Agency for Research on Cancer (IARC) concluded that “shift-work that involves circadian disruption is probably carcinogenic to humans”. Severe disruption alteration accelerated tumor progression and enhanced carcinogenesis. During my PhD, I demonstrated that circadian disruption resulting from mutation of Per and Cry clock genes accelerated liver carcinogenesis induced by diethylnitrosamine through promoting genomic instability, cellular proliferation, and inflammation. I showed that meal timing or dexamethasone altered circadian regulation of these three characteristics of cancer, suggesting a therapeutic intervention targeting the circadian system could prevent carcinogenesis. I have thus demonstrated the circadian control of three molecular mechanisms of early carcinogenesis and proposed two interventions targeting the circadian clock for liver carcinogenesis prevention.L’agence internationale de recherche sur le cancer (IARC) a indiqué que le travail posté qui provoquait une disruption circadienne était probablement cancérogène chez l’Homme. Ainsi, une perturbation expérimentale sévère du système circadien accélère-t elle la progression tumorale et pourrait favoriser la cancérogénèse. Durant ma thèse, j’ai démontré que la disruption circadienne résultant d’une mutation ou d’une mise au silence des gènes de l’horloge Per ou Cry accélérait la cancérogénèse hépatique induite par la diéthylnitrosamine, en favorisant l’instabilité génomique, la prolifération cellulaire, et l’inflammation. J’ai montré que l’alimentation programmée ou la dexaméthasone modifiaient la régulation circadienne de ces trois caractéristiques du cancer, suggérant ainsi qu’une intervention thérapeutique ciblant le système circadien pourrait prévenir la cancérogénèse. J’ai ainsi mis en évidence le contrôle circadien de trois mécanismes moléculaires de la cancérogenèse précoce et proposé deux interventions ciblant l’horloge circadienne dans un but de prévention de la cancérogenèse

    Role of circadian clock in liver carcinogenesis and its prevention

    No full text
    L’agence internationale de recherche sur le cancer (IARC) a indiqué que le travail posté qui provoquait une disruption circadienne était probablement cancérogène chez l’Homme. Ainsi, une perturbation expérimentale sévère du système circadien accélère-t elle la progression tumorale et pourrait favoriser la cancérogénèse. Durant ma thèse, j’ai démontré que la disruption circadienne résultant d’une mutation ou d’une mise au silence des gènes de l’horloge Per ou Cry accélérait la cancérogénèse hépatique induite par la diéthylnitrosamine, en favorisant l’instabilité génomique, la prolifération cellulaire, et l’inflammation. J’ai montré que l’alimentation programmée ou la dexaméthasone modifiaient la régulation circadienne de ces trois caractéristiques du cancer, suggérant ainsi qu’une intervention thérapeutique ciblant le système circadien pourrait prévenir la cancérogénèse. J’ai ainsi mis en évidence le contrôle circadien de trois mécanismes moléculaires de la cancérogenèse précoce et proposé deux interventions ciblant l’horloge circadienne dans un but de prévention de la cancérogenèse.The International Agency for Research on Cancer (IARC) concluded that “shift-work that involves circadian disruption is probably carcinogenic to humans”. Severe disruption alteration accelerated tumor progression and enhanced carcinogenesis. During my PhD, I demonstrated that circadian disruption resulting from mutation of Per and Cry clock genes accelerated liver carcinogenesis induced by diethylnitrosamine through promoting genomic instability, cellular proliferation, and inflammation. I showed that meal timing or dexamethasone altered circadian regulation of these three characteristics of cancer, suggesting a therapeutic intervention targeting the circadian system could prevent carcinogenesis. I have thus demonstrated the circadian control of three molecular mechanisms of early carcinogenesis and proposed two interventions targeting the circadian clock for liver carcinogenesis prevention

    Rôle de l'horloge circadienne dans la cancérisation hépatique expérimentale et sa prévention

    No full text
    L agence internationale de recherche sur le cancer (IARC) a indiqué que le travail posté qui provoquait une disruption circadienne était probablement cancérogène chez l Homme. Ainsi, une perturbation expérimentale sévère du système circadien accélère-t elle la progression tumorale et pourrait favoriser la cancérogénèse. Durant ma thèse, j ai démontré que la disruption circadienne résultant d une mutation ou d une mise au silence des gènes de l horloge Per ou Cry accélérait la cancérogénèse hépatique induite par la diéthylnitrosamine, en favorisant l instabilité génomique, la prolifération cellulaire, et l inflammation. J ai montré que l alimentation programmée ou la dexaméthasone modifiaient la régulation circadienne de ces trois caractéristiques du cancer, suggérant ainsi qu une intervention thérapeutique ciblant le système circadien pourrait prévenir la cancérogénèse. J ai ainsi mis en évidence le contrôle circadien de trois mécanismes moléculaires de la cancérogenèse précoce et proposé deux interventions ciblant l horloge circadienne dans un but de prévention de la cancérogenèse.The International Agency for Research on Cancer (IARC) concluded that shift-work that involves circadian disruption is probably carcinogenic to humans . Severe disruption alteration accelerated tumor progression and enhanced carcinogenesis. During my PhD, I demonstrated that circadian disruption resulting from mutation of Per and Cry clock genes accelerated liver carcinogenesis induced by diethylnitrosamine through promoting genomic instability, cellular proliferation, and inflammation. I showed that meal timing or dexamethasone altered circadian regulation of these three characteristics of cancer, suggesting a therapeutic intervention targeting the circadian system could prevent carcinogenesis. I have thus demonstrated the circadian control of three molecular mechanisms of early carcinogenesis and proposed two interventions targeting the circadian clock for liver carcinogenesis prevention.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Circadian timing in cancer treatments

    No full text
    International audienc

    Neuroprotective effects of PACAP against paraquat-induced oxidative stress in the Drosophila central nervous system

    No full text
    International audienceParkinson's disease (PD) is a progressive neurodegenerative movement disorder that can arise after long-term exposure to environmental oxidative stressors, such as the herbicide paraquat (PQ). Here we investigated the potential neuroprotective action of vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) against PQ in Drosophila. We found that pre-treatment with this neuropeptide applied to the ventral nerve cord (VNC) at low doses markedly extended the survival of wild-type decapitated flies exposed to neurotoxic levels of PQ or dopamine (DA). In contrast and interestingly, application of a PACAP receptor antagonist, PACAP-6-38, had opposite effects, significantly decreasing the resistance of flies to PQ. PACAP also reduced PQ-induced caspase activation and reactive oxygen species (ROS) accumulation in the VNC. We then searched for the endogenous neuropeptide receptor potentially involved in PACAP-mediated neuroprotection in Drosophila. Knocking down the gene encoding the receptor Han/PDFR of the neuropeptide pigment-dispersing factor (PDF) in all neurons conferred to flies higher resistance to PQ, whereas PDFR downregulation restricted to PDF or DA neurons did not increase PQ resistance, but remarkably suppressed the neuroprotective action of PACAP. Further experiments performed with Pdf and Pdfr-deficient mutant strains confirmed that PDF and its receptor are required for PACAP-mediated neuroprotection in flies. We also provide evidence using split-green fluorescent protein (split-GFP) reconstitution that PDF neurons make synaptic contacts onto DA neurons in the abdominal VNC. Our results therefore suggest that the protective action of PACAP against PQ-induced defects in the Drosophila nervous system involves the modulation of PDFR signaling in a small number of interconnected neurons

    Critical cholangiocarcinogenesis control by cryptochrome clock genes

    No full text
    A coordinated network of molecular circadian clocks in individual cells generates 24-hr rhythms in liver metabolism and proliferation. Circadian disruption through chronic jet lag or Per2 clock gene mutation was shown to accelerate hepatocarcinoma development in mice. As divergent effects were reported for clock genes Per and Cry regarding xenobiotic toxicity, we questioned the role of Cry1 and Cry2 in liver carcinogenesis. Male WT and Cry1-/-Cry2-/- mice (C57Bl/6 background) were chronically exposed to diethylnitrosamine (DEN) at ZT11. Rest-activity and body temperature rhythms were monitored using an implanted radiotransmitter. Serum aspartate and alanine aminotransferases (AST and ALT) were determined on four occasions during the progression stage. After 7 months, serum alkaline phosphatases (ALP) were determined, and livers were sampled for microscopic tumor nodule counting and histopathology. Five months after initiation of DEN treatment, we found that Cry1-/-Cry2-/- mice developed severe liver dysplasia, as evident from the increased AST, ALT and ALP levels, as compared to WT mice. DEN exposure induced primary liver cancers in nearly fivefold as many Cry1-/-Cry2-/- mice as compared to WT mice (p=0.01). Microscopic study revealed no difference in the average number of hepatocarcinomas and a nearly eightfold increase in the average number of cholangiocarcinomas in Cry1-/-Cry2-/- mice, as compared to WT mice. This study validated the hypothesis that molecular circadian clock disruption dramatically increased chemically induced liver carcinogenesis. In addition, the pronounced shift toward cholangiocarcinoma in DEN exposed Cry1-/-Cry2-/- mice revealed a critical role of the Cry clock genes in bile duct carcinogenesis

    Metabolic and neurobehavioral disturbances induced by purine recycling deficiency in Drosophila

    No full text
    International audienceLesch-Nyhan disease (LND) is a rare genetic disorder induced by deficiency in hypoxanthine-guanine phosphoribosyltransferase (HGPRT), an enzyme of the purine salvage pathway. This leads in early age to hyperuricemia and severe neurobehavioral disturbances, including dystonia, spasticity and compulsive self-injury. To date, no treatment is available for these neurological symptoms and no animal model recapitulates all the defects observed in LND patients. Here we studied LND-related mechanisms in the fruit fly Drosophila melanogaster. We confirmed that no HGPRT activity is expressed in this organism, where the only purine-recycling enzyme is adenine phosphoribosyltransferase (Aprt). This enzyme is also present in humans but its deficiency does not trigger neurological defects. In contrast, we observed that Drosophila Aprt mutants showed both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor reactivity impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by neuronal Aprt re-expression in mutant context and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) clusters of dopaminergic neurons, the mushroom bodies and glia subsets. Ingestion of allopurinol normalized uric acid levels in Aprt mutants but not their neurological defects, as is the case in LND patients, whereas feeding adenosine or N 6-methyladenosine during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, this shows that Drosophila can be used as a new model in different ways to better understand LND and seek a cure for this dramatic disease
    corecore