201 research outputs found

    Effective removal of iron, nutrients, micropollutants, and faecal bacteria in constructed wetlands cotreating mine water and sewage treatment plant effluent

    Get PDF
    Regulators in England and Wales have set new targets under the Environment Act 2021 for freshwater quality by 2038 that include halving the length of rivers polluted by harmful metals from abandoned mines and reducing phosphorus loadings from treated wastewater by 80%. In this context, an intriguing win-win opportunity exists in the removal of iron from abandoned mines and phosphate from small sewage treatment plants by coprecipitation in constructed wetlands (CWs). We investigated such a CW located at Lamesley, Northeast England, which cotreats abandoned coal mine and secondary-treated sewage treatment plant effluents. We assessed the removal of nutrients, heavy metals, organic micropollutants, and faecal coliforms by the CW, and characterized changes in the water bacteriology comprehensively using environmental DNA. The CW effectively removed ammonium-nitrogen, phosphorus, iron, and faecal coliforms by an average of 86, 74, 98, and 75%, respectively, to levels below or insignificantly different from those in the receiving river. The CW also effectively removed micropollutants such as acetaminophen, caffeine, and sulpiride by 70-100%. Molecular microbiology methods showed successful conversion of sewage and mine water microbiomes into a freshwater microbiome. Overall, the CW significantly reduced impacts on the rural water environment with minimal operational requirements

    Histological Evaluation of Corneal Scar Formation in Pseudophakic Bullous Keratopathy

    Get PDF
    PURPOSE: To evaluate histological changes in the corneal stroma in pseudophakic bullous keratopathy. METHODS: Twenty-eight patients (28 eyes) with pseudophakic bullous keratopathy underwent therapeutic penetrating keratoplasty at Shandong Eye Institute between January 2006 and November 2011. The patients were divided into two groups according to the duration of bullous keratopathy (<1.0 year group or >1.0 year group), and three buttons from enucleated eyes with choroidal melanoma served as a control. In vivo confocal microscopy examination, hematoxylin-eosin, Masson's trichrome stain and Van Gieson staining were used for microscopic examination. The histological evaluation and scoring of the buttons for morphological changes, including the degree of stromal scars, neovascularization and inflammatory cells within the corneal buttons, were compared. To study the underlying mechanism, connective tissue growth factor (CTGF) and TGF-ÎČ immunohistochemistry were performed. RESULTS: Confocal microscopy examination and histological evaluation and scoring of the buttons showed that compared with the <1.0 year group, stromal scars, neovascularization and inflammatory cells were more severe in the >1.0 year group (P<0.05). There was an increase in CTGF- and TGF-ÎČ1-positive stromal cells in the >1.0 year group. CONCLUSIONS: During the progression of pseudophakic bullous keratopathy, stromal scars occurred more often in the patients that had a longer duration of disease. Cytokines such as CTGF and TGF-ÎČ1 may play a role in this pathological process and deserve further investigation

    Elevated nerve growth factor and neurotrophin-3 levels in cerebrospinal fluid of children with hydrocephalus

    Get PDF
    BACKGROUND: Elevated intracranial pressure (ICP) resulting from impaired drainage of cerebrospinal fluid (CSF) causes hydrocephalus with damage to the central nervous system. Clinical symptoms of elevated intracranial pressure (ICP) in infants may be difficult to diagnose, leading to delayed treatment by shunt placement. Until now, no biochemical marker of elevated ICP has been available for clinical diagnosis and monitoring. In experimental animal models, nerve growth factor (NGF) and neurotrophin-3 (NT-3) have been shown to be produced by glial cells as an adaptive response to hypoxia. We investigated whether concentrations of NGF and NT-3 are increased in the CSF of children with hydrocephalus. METHODS: NGF was determined in CSF samples collected from 42 hydrocephalic children on 65 occasions (taps or shunt placement surgery). CSF samples obtained by lumbar puncture from 22 children with suspected, but unconfirmed bacterial infection served as controls. Analysis was performed using ELISA techniques. RESULTS: NGF concentrations in hydrocephalic children were over 50-fold increased compared to controls (median 225 vs 4 pg/mL, p < 0.0001). NT-3 was detectable (> 1 pg/mL) in 14/31 hydrocephalus samples at 2–51 pg/mL but in none of 11 control samples (p = 0.007). CONCLUSION: NGF and NT-3 concentrations are increased in children with hydrocephalus. This may represent an adaptive response of the brain to elevated ICP

    Roadmap for a sustainable circular economy in lithium-ion and future battery technologies

    Get PDF
    The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future

    The chemistry and biological activity of the Hyacinthaceae

    Get PDF
    Covering: 1914 to 2012The Hyacinthaceae (sensu APGII), with approximately 900 species in about 70 genera, can be divided into three main subfamilies, the Hyacinthoideae, the Urgineoideae and the Ornithogaloideae, with a small fourth subfamily the Oziroëoideae, restricted to South America. The plants included in this family have long been used in traditional medicine for a wide range of medicinal applications. This, together with some significant toxicity to livestock has led to the chemical composition of many of the species being investigated. The compounds found are, for the most part, subfamily-restricted, with homoisoflavanones and spirocyclic nortriterpenoids characterising the Hyacinthoideae, bufadienolides characterising the Urgineoideae, and cardenolides and steroidal glycosides characterising the Ornithogaloideae. The phytochemical profiles of 38 genera of the Hyacinthaceae will be discussed as well as any biological activity associated with both crude extracts and compounds isolated. The Hyacinthaceae of southern Africa were last reviewed in 2000 (T. S. Pohl, N. R. Crouch and D. A. Mulholland, Curr. Org. Chem., 2000, 4, 1287-1324; ); the current contribution considers the family at a global level
    • 

    corecore