743 research outputs found

    Research of Quantum Well Laser Diode’s and Heterostructural P-I-N Photodiode’s of Fiber-Optic Modules Radiation Hardness to Gamma-ray and Neutron Irradiation

    Get PDF
    The paper presents the measurements results of optical and electrical parameters of quantum well laser diodes and heteroepitaxial photodiodes under gamma-ray and neutron irradiation. The testing results of transceiver modules gamma irradiation tolerance are introduced. The most vulnerable elements of module are highlighted. Keywords: laser diode, photodiode, radiation hardness, VCSEL, transceiver modules, fiber-optic communicatio

    Reflection and transmission of Rayleigh waves in a wedge

    Get PDF
    An approximate theory of the reflection and transmission of Rayleigh waves in an elastic wedge is developed on the basis of the representation of the wedge by a system of two coupled surface-wave wave-guides. The theory is in good agreement with the existing experimental data and permits the prediction of a number of new results, which can be tested experimentally

    Leaky SAW branches coupled with oblique acoustic axes in trigonal crystals

    Get PDF

    Types of leaky SAW degeneracy in crystals

    Get PDF

    Study of Gamma-ray Induced Attenuation of Fluorine-doped Single-mode Radiation Hard Optic Fiber

    Get PDF
    The paper presents the measurements results of optic fiber’s radiation induced attenuation. The approach of optic fiber’s radiation test at negative temperatures is introduced. The results of an investigation of the decay of an optical signal during a pulsed electron. Keywords: radiation hardness, fiber-optic communication, radiation-induced attenuatio

    Scaling Behavior of Quasi-One-Dimensional Vortex Avalanches in Superconducting Films

    Get PDF
    Scaling behaviour of dynamically driven vortex avalanches in superconducting YBa2_{2}Cu3_{3}O7−δ_{7-\delta} films deposited on tilted crystalline substrates has been observed using quantitative magneto-optical imaging. Two films with different tilt angles are characterized by the probability distributions of avalanche size in terms of the number of moving vortices. It is found in both samples that these distributions follow power-laws over up to three decades, and have exponents ranging between 1.0 and 1.4. The distributions also show clear finite-size scaling, when the system size is defined by the depth of the flux penetration front -- a signature of self-organized criticality. A scaling relation between the avalanche size exponent and the fractal dimension, previously derived theoretically from conservation of the number of magnetic vortices in the stationary state and shown in numerical simulations, is here shown to be satisfied also experimentally.Comment: 7 pages, 5 figure

    Quasi-one-dimensional intermittent flux behavior in superconducting films

    Get PDF
    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa2Cu3O7-δ deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching) avalanches that are commonly found in superconducting films

    Graphoepitaxial growth of CeO2 thin films on tilted-axes NdGaO3 substrates by pulsed laser deposition

    Get PDF
    CeO2 thin films were grown on NdGaO3 tilted-axes substrates by pulsed laser deposition (PLD) showing three-dimensional graphoepitaxial (3DGE) growth in the whole studied range of substrate tilt angles γ = 5-27º. Deviations from the tangent dependence can be divided into a systematic negative part and local deviations near certain film tilt angles. The systematic deviation may be explained as the effect of completely-strained coherent growth of the bottom layers of CeO2 film. Minimization of the surface energy near the small-index crystallographic planes (012) and (013) may account for the local deviations from the calculated dependence. The width of the rocking curve and the lattice constant variation for the 3DGE CeO2 films increase almost linearly with the substrate tilt angle until 19º and decrease for higher γ. At different deposition rates the 3DGE CeO2 film exhibits three possible structures: (i) relaxed completely oxygenated films at very low deposition rate, (ii) completely strained well-oxygenated films at moderate deposition rates, and (iii) oxygen-deficient films consisting of two layers at high deposition rates. The deviations of orientation of the film from the 3DGE formula are set by the lattice constant c in the direction normal to the (110) SICP of the substrate, which, in turn, depends on oxygen deficiency and the level of strain, introduced into the film by lattice mismatch with the substrate.publishe

    Abstract OR-2: The Formation of Dps-DNA Complexes under Different Conditions According to Cryo-EM and SAXS

    Get PDF
    Background: The effect of Dps-DNA co-crystals formation, which occurs in stressed Escherichia coli cells exposed to extreme conditions, is well described in the literature. However, the exact mechanisms of co-crystals formation are yet to be postulated remaining largely unknown. Here we summarize the results obtained by our group over the last few years using cryo-Electron Microscopy (cryo-EM) and Small Angle X-ray Scattering (SAXS). Methods: Samples for cryo-EM were plunge frozen in liquid ethane with Vitrobot Mark IV and studied with Titan Krios (ThermoFisher Scientific, US) cryo-EM, equipped with Falcon 2 direct electron detector, Image corrector (CEOS, Germany), and Volta phase plate. Single Particle Analysis (SPA) and cryo-Electron Tomography (cryo-ET) studies were conducted with 300 kV accelerating voltage in low dose mode using EPU and Tomography software (ThermoFisher Scientific, US). Cryo-EM data processing was conducted using Warp, CryoSPARC, IMOD, EMAN, and Relion software packages. SAXS measurements were performed at the EMBL on the P12 BioSAXS beam line at the PETRAIII storage ring (DESY, Hamburg). Results: In this work, Dps-DNA complex formation is thoroughly studied using complementary cryo-EM (including SPA, cryo-ET, and subtomogram averaging) and SAXS methods. The formation of individual complexes of Dps with small linear DNA fragments and the Dps-Dps interaction was visualized using cryo-EM. It was found that Dps-DNA complex remains stable under various conditions and while the addition of different ions leads to the disruption of co-crystals, the process is completely or partially reversible. Conclusion: Recent studies conducted by our group showed that Dps-DNA co-crystals adopt triclinic or cubic crystal lattice (FEBS Lett., 2019; Biomolecules, 2020). Here we present the results on the studies of Dps interaction with small linear DNA fragments, demonstrate the effects of MgCl2, FeSO4, and EDTA on the Dps-DNA complex and individual Dps protein structure, discuss the influence of the temperature and time on the co-crystals
    • …
    corecore