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An approximate theory of the reflection and transmission of Rayleigh waves in an elastic wedge is developed
on the basis of the representation of the wedge by a system of two coupled surface-wave waveguides. The
theory is in good agreement with the existing experimental data and permits the prediction of a number of

new results, which can be tested experimentally.

The interaction of Rayleigh waves with the edge of an
elastic wedge is investigated in such scientific and en-
gineering fields as seismology, ultrasonic surface flaw
detection, and fracture mechanics.'"! It has recently
stimulated a certain interest among specialists in acousto-
electronics in connection with the promising outlook for
the application of the edges of wedges (corners) as effec-
tive frequency-independent surface-wave reflectors,’ for
the wideband conversion of bulk to surface waves and vice
versa,® " and for the suppression of spurious signals in
surface-acoustic-wave (SAW) delay lines and filters.®? De_
spite the considerable time devoted to the study of this
problem and the large number of publications pertaining
to it (see, e.g., Knopoff's survey?), it is still far from
solution in the theoretical plan, even for the isotropic
case. This is because of fundamental difficulties in the
formulation of exact analytical solutions of the dynamical
equations of the theory of elasticity, subject to the condi-
tion of the absence of normal stresses on the surface of
the wedge-shaped region.! The existing computer-gen-
erated numerical solutions'''!? refer only to the simplest
case of a right-angle wedge. The current approximate
theories,” =!8 on the other hand, are in poor agreement
with the experimental data, particularly in the range of
small wedge angles 8. Specifically, none of these theories
affords a satisfactory description of the experimentally
observed'~® multiple oscillations of the Rayleigh-wave re-
flection and transmission coefficients as a function of the
angle 6. Also lacking is an explanation of why almost
total reflection or transmission of Rayleigh waves is pos-
sible for small angles 9.

In the present article we propose a straightforward
approximate theory of the reflection and transmission of
Rayleigh waves in a wedge, where the indicated oscilla-
tions are described. In contrast with the majority of the
existing approaches, which are valid for § ~ 7, the pro-
posed theory proceeds from the opposite limiting case
#~0. The wedge in this case can be regarded as a com-
bination of two coupled waveguides, because each of its
faces represents a‘guiding structure for surface waves.

A Rayleigh wave incident on the edge of the wedge is then
represented by the sum of a symmetric and an antisym-
metric mode of the given "coupled waveguide system."

For sufficiently sharp wedges these modes can be approxi-
mated by the lowest symmetric (longitudinal) and the
lowest antisymmetric (flexural) Lamb (plate) modes in a
plane-parallel plate of thickness h corresponding to the
local thickness of the wedge. We note that the actual idea
of representing the modes of a sharp wedge by plane-
parallel plate modes is quite well known.'">!3 However,

the idea has not been used before in application to the anal-
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ysis of Rayleigh-wave reflection and transmission in the
wedge.

We now undertake the direct solution of the stated
problem (Fig. 1). We first consider the simpler case of
normal incidence of a Rayleigh wave on the edge of the
wedge (the angle of incidence @ = 0). The displacements
uy in the incident wave on the surface of the wedge are rep-
resented by the sum of a symmetric wave ug and an anti-
symmetric wave o

U=l Uy,
. (1
u,=(u,/2) exp { ~L’j k,(z', S)dz'] ,
% (2)
U= (uD/Q)exp[ —i j ke (2", B)dr'] X (3)
o

Here u, is the amplitude of the incident Rayleigh wave [the
factor exp(—iwt) is omitted]; ks(x, ) and k,(x, 8) are the
and antisymmetric wave numbers, which depend on the
coordinate x measured from the edge of the edge as a re-
sult of the variation of its effective local thickness h(x, 6) =
2xtan(6/2); X, is a certain initial coordinate, which is
sufficiently far from the edge and satisfies the condition
h(xg, ) > AR, where AR is the Rayleigh wavelength at a
given frequency w. Excitation of the Rayleigh wave inci-
dent on the edge of the wedge takes place at the point X4
and the phases of the symmetric and antisymmetric modes
are measured relative to this reference point. Either the
longitudinal or the transverse component of the displace-
ment vectors in the Rayleigh and Lamb waves can be taken
as the displacements u. The equality of the amplitudes of
the symmetric and antisymmetric waves in Eqs. (1)-(3)
follows from the fact that the excitation of the incident
Rayleigh wave takes place only on one face of the wedge,
so that the symmetric and antisymmetric waves must ex-
actly cancel one another on the opposite face at x~ Xy. We
note that the representation (1) is standard in the theory

FIG. 1. Geometry of the problem.
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of coupled waveguides (see, e.g., Louisell's book'?). Equa-
tions (2) and (3), on the other hand, are essentially a first
approximation of the well-known WKB method. The varia-
tion of the wave amplitudes ug and ug with the distance
traveled is disregarded, because their growth as the edge
is approached is subsequently compensated in the process
of reverse propagation of the reflected symmetric and
antisymmetric waves to the reception point.

At sufficiently large x in the interval x< x,, for which
h(x, ) > AR, the equality kg =k, = kR holds with a high de-
gree of accuracy, where kg is the Rayleigh wave number,
and both modes involved in Eq.(1) propagate in phase. As
the waves approach the edge of the wedge, i.e., for h(x,

§) < AR, the guantities kg and k, differ appreciably from

one another, creating a phase difference between the modes.

After reflection of the symmetric and antisymmetric
modes from the edge of the wedge, which can be regarded
as reflection from the free end of a thin plate in the given
approximation, the phase separation process continues
during propagation of the waves in the reverse direction.
Clearly, the f-dependent phase difference between the re-
flected symmetric (ug') and antisymmetric (u,') waves at
the reception point is in fact the cause of the oscillations
of the Rayleigh-wave reflection and transmission coeffi-
cients as the wedge angle 6 is varied. Of course, this is
true under the assumption that the moduli of the reflection
coefficients of both the symmetric and antisymmetric
wave are individually close to unity, i.e., the conversion
of energy from the investigated lowest Lamb modes into
higher modes, corresponding to the scattering of surface
into bulk waves at the edge of the wedge, is practically ab-
sent. This assumption is fully justified in the case of
sharp wedges, because it holds true for waves in thin
plane-parallel plates.

The expressions for the reflected (ug) and trans-
mitted (ur) Rayleigh waves measured at distances x; from
the edge of the wedge are written as follows in light of the
foregoing considerations:

ur=u, +u,, (4)
ur=u,’—u.'. 5
u, = (us/2) exp(—iq.,—id,), (6)
u = (ue/2) exp (—iga—iD,), (7)

L]
where cp“a=2j‘ k,o(z,6)dz are the phase leads to the sym-

metric and antisymmetric waves in transmission from the
point x; to the edge of the wedge and back again, and &g,
&, are the phase shifts of these waves in direct reflection
from the edge. The main sign in Eq. (5) is associated
with the phase relations between the oscillations in the
waves ug and u,. If the oscillations in these wave have a
phase difference A¢ on one of the faces of the wedge, the
phase difference on the other face will be equal to 2o+ 7
by virtue of the antisymmetry of the wave u,, and this is
equivalent to the placement of a minus sign in front of u,'
in Eq. (5). From the relations (4)-(7) we readily obtain ex-
pressions for the coefficients of reflection R = uR/uI and
transmission T = up/uj of Rayleigh waves in the wedge:
R=sin W_exp(i¥,—in/2), T=cosW_exp(i¥.), (8)

where
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V_= \r [ko(z,0) =k, (2.0) Jdz+ (n+D.=D,) /2.

The phase shifts  and & are left undetermined in
Egs. (8). It is known from the theory of vibrations of thin
plates®” that &5 = &4(0) = 0 and &, = ®,(0) = 7/2 for plates
of a constant thickness. In order to extend the domain of
validity of the given theory of Rayleigh-wave reflection
and transmission to the case of not too sharp wedge angles,
it is necessary to take the dependence of ® and ¢ ,on 6§
into account. The simplest way to do this is by linear in-
terpretation of the values of &; and ®,at 6 =0 and at § =7.
The case 6§ = 7 clearly corresponds to the transition from
a wedge to a half-space. In this case &g and &, are readi-
ly determined by analyzing the opposing motion of two in-
phase and two in-phase and two antiphase Rayleigh waves,
respectively, on the surface of a half-space, whence it

follows that & = &4(7) = 0 and &4 = ®4(7) = 7. The func-
tions @4(¢) and $4(0) then acquire the forms <i>s(0)E 0
®,(0) = (T+6)/2 inthe given approximation. Using these

expressions and replacing the integration with respect to
x in Eq. (8) by integration with respect to h, we can write
the moduli of the reflection and transmission coefficients
as Xy, which are the quantities actually determined in
experiment, in the form

{R|=!sin[8/tg (8/2) — (n—8)/4]{,

9
|T|=|cos[6/tg(6/2) — (n—8)/4]l,

where §=('/,) | [k.(h)—k,(h)]dh is a dimensionless con-

stant that depends on the elastic properties of the wedge
material.

The subsequent analysis entails the calculation of
for which it is necessary to know the complete functions
ks(h) and ka(h). Inasmuch as analytical equations do not
exist for ks(h) and ka(h), it is convenient in the calcula-
tions to use the approximations of the corresponding dis-
persion relations obtained by numerical methods.?! We
introduce the approximation in such a way that the func-
tions k,(h) and kg (h) will tend to the functions for flexural
and longitudinal plate waves, respectively as h—0 and to
the dispersion relation for a Rayleigh wave, as h—~,
Proceeding from this condition, we write the approximat-
ing functions in the form

¢ c, -
E5=Q[————} [+(40) ]+
g i [H(49)°] . (10)
PR2N\F e\ e
=O<—> ( ) [1+(BQ)]-+0Q .
T Cp Cr
Here g, .=k, A/n. Q=whinc., c=2c.(1—ci/c?)” is the so-

called "plate” velocity, to which the velocity of the sym-
metric mode tends as h —~ 0, ¢/ and ct are the velocities
of longitudinal and shear bulk waves, and A and B are
dimensionless approximation constants. For Duralumin
(v =0.35), which has been used in experiments,’»? A =
0.94,B ~ 1,95, and the calculation of & in accordance with
Egs. (10) gives 6 ~ 2.75.

Figure 2 shows |R|and | T| as a function of the angle
8, calculated according to Egs. (9) for 6 =2.75. Also
shown are the experimental values of |R| and |T| ob-
tained for Duralumin samplesl’: (it is important to note
that the measurements reported in Refs. 1 and 2 are the
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FIG: 2+
mission coefficient |T| vs wedge angle 8. 1) Theoretical; 2) experimen-

Moduli of the Rayleigh-wave reflection coefficient |R| and trans-
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tal.b?

most detailed of any published to date). It is evident from
Fig. 2 that the theoretical curves, on the whole, are in
fairly good agreement with the experimental data. In
particular, they correctly describe the experimentally ob-
served decrease in the oscillation period with a decrease
in the wedge angle 6, and the correspondence of the maxi-
ma of the reflection coefficient with the minima of the
transmission coefficient and vice versa. Good qualitative
agreement is also observed in the case of large angles 4,
where the given theory is patently invalid, specifically be-
cause of its disregard for the appreciable scattering into
bulk waves that occurs for such angles. The presence of
this kind of scattering is manifested in the fact that the
quantity R[>+ | T|2 calculated according to the experimen
tal data'? (see Fig. 2) becomes smaller than unity. On
the other hand, according to Eqs. (8) and (9), IR1>+ IT|2=1
always. In the range of ultimately small angles 6, the ex-
perimental points given in Refs. 1 and 2 are clearly in-
adequate for the quantitative comparison of the theory with
experiment. The measurements described in these papers
were performed on individual wedges whose angle 8 was
incremented in 3.5° steps in the small-angle range. But
the periods of the oscillations of the theoretical curves are
already commensurate with andeven smaller than the mea-
surement step for 6 < 30°.

We now discuss the case of oblique incidence of a
Rayleigh wave on the edge of a wedge at an angle o (see
Fig. 1). Now both the symmetric and the antisymmetric
mode experience refraction as the edge is approached, and
the nature of the refraction for these modes differs owing
to the difference in the laws governing the variation of
their velocities near the edge. Clearly, the symmetric
mode will be incident on the edge of the wedge at a more
oblique angle (curve 1 in Fig. 1), and the antisymmetric
mode will arrive practically at a right angle (curve 2 in
Fig. 1) due to the tendency of its velocity to zero near the
edge. Refraction can be neglected for small angles of in-

cidence «. It then follows from simple geometrical con-
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siderations that Eqs. (9) can once again be used if the
quantity 6 is replaced by 6/cos @ in them. Consequently,
even for a fixed wedge angle, oscillations of 'R| and |T|
can occur with a variation of the angle of incidence «.
This effect has not been described before in the literature.

With an increase in @, the refraction difference in the
paths traversed by the symmetric and antisymmetric
modes increases, and it must be taken into account {6 de~
pends on « in this case). Obviously, the refraction-in-
duced increase in the acoustic path for the symmetric
mode and its decrease for the antisymmetric mode will
have the effect of decreasing the phase difference between
them and thus decreasing the number of oscillations of |R!
and |T!| as a function of the angle «.

Consequently, the theory developed in the present
study of the reflection and transmission of Rayleigh waves
in a wedge agrees quite well with the published experimen-
tal data and makes it possible to predict new effects,
which can be tested experimentally.
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