221 research outputs found

    Practice patterns in the management of myasthenia gravis: a cross-sectional survey of neurologists in the United States

    Get PDF
    Background: Management of myasthenia gravis (MG), a rare immunoglobulin G autoantibody–mediated neuromuscular junction disorder, is driven by physician experience. To gain insight into current practices and physician needs, neurologists’ use of guidelines and disease activity evaluations to manage MG was assessed. Methods: In November and December of 2020, a quantitative, cross-sectional, 51-item, online survey–based study was used to collect data from 100 community neurologists, from 31 US states, who treat MG. Differences across ratio variables were analyzed via Chi-square and t tests, at a significance level of P<0.05. Results: Of respondents, 76% reported using clinical judgment rather than guidelines to inform treatment decisions, and only 29% reported awareness of the updated 2020 International Consensus Guidance for Management of Myasthenia Gravis. Treatment patterns reported include use of prednisone-equivalent corticosteroid doses ≤10 mg/day for ≥6 months (76% of respondents). When corticosteroids are contraindicated or after failure of an initial nonsteroidal immunosuppressant therapy (NSIST), immunoglobulin therapy is the respondents’ preferred initial treatment in patients with acetylcholine receptor antibody–positive generalized MG (vs a second NSIST). Respondents expressed interest in more guidance on crisis management, initiating/titrating maintenance medications, and managing patients with comorbidities. Conclusions: Respondents to this survey reported varied approaches to MG management and, in some clinical settings, heavier reliance on clinical judgment than on available consensus-based guidance. Also observed was potential underutilization of NSISTs in patients for whom corticosteroids are contraindicated, with reliance, instead, on immunoglobulin

    QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology.

    Get PDF
    Skeletal muscle injury provokes a regenerative response, characterized by the de novo generation of myofibers that are distinguished by central nucleation and re-expression of developmentally restricted genes. In addition to these characteristics, myofiber cross-sectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative responses. Here, we introduce QuantiMus, a free software program that uses machine learning algorithms to quantify muscle morphology and molecular features with high precision and quick processing-time. The ability of QuantiMus to define and measure myofibers was compared to manual measurement or other automated software programs. QuantiMus rapidly and accurately defined total myofibers and measured CSA with comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with greater precision compared to other software. It additionally quantified the fluorescence intensity of individual myofibers of human and mouse muscle, which was used to assess the distribution of myofiber type, based on the myosin heavy chain isoform that was expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus has several advantages over existing software. The unique self-learning capacity of the machine learning algorithms provides superior accuracy and the ability to rapidly interrogate the complete muscle section. These qualities increase rigor and reproducibility by avoiding methods that rely on the sampling of representative areas of a section. This is of particular importance for the analysis of dystrophic muscle given the "patchy" distribution of muscle pathology. QuantiMus is an open source tool, allowing customization to meet investigator-specific needs and provides novel analytical approaches for quantifying muscle morphology

    QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology

    Get PDF
    Skeletal muscle injury provokes a regenerative response, characterized by the de novo generation of myofibers that are distinguished by central nucleation and re-expression of developmentally restricted genes. In addition to these characteristics, myofiber crosssectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative responses. Here, we introduce QuantiMus, a free software program that uses machine learning algorithms to quantify muscle morphology and molecular features with high precision and quick processing-time. The ability of QuantiMus to define and measure myofibers was compared to manual measurement or other automated software programs. QuantiMus rapidly and accurately defined total myofibers and measured CSA with comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with greater precision compared to other software. It additionally quantified the fluorescence intensity of individual myofibers of human and mouse muscle, which was used to assess the distribution of myofiber type, based on the myosin heavy chain isoform that was expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus has several advantages over existing software. The unique self-learning capacity of the machine learning algorithms provides superior accuracy and the ability to rapidly interrogate the complete muscle section. These qualities increase rigor and reproducibility by avoiding methods that rely on the sampling of representative areas of a section. This is of particular importance for the analysis of dystrophic muscle given the “patchy” distribution of muscle pathology. QuantiMus is an open source tool, allowing customization to meet investigatorspecific needs and provides novel analytical approaches for quantifying muscle morphology

    Mexiletine for muscle cramps in amyotrophic lateral sclerosis: A randomized, double-blind crossover trial

    Get PDF
    INTRODUCTION:More than 90% of amyotrophic lateral sclerosis (ALS) patients have muscle cramps, but evidence-based treatments have not been available.METHODS:A multicenter, double-blind, placebo-controlled crossover trial of mexiletine 150 mg twice daily was conducted in ALS patients requesting treatment of symptomatic muscle cramps.RESULTS:Muscle cramp frequency was reduced in 18 of 20 patients; 13 reductions were attributed to treatment (P < 0.05). The average reduction, based on t tests, was 1.8 cramps per day (a reduction from 5.3 with placebo to 3.5 with mexiletine). The estimated reduction of cramp severity was 15 units on a 100-unit scale (P = 0.01) from a baseline average of 46. No effect on fasciculations was noted. One patient discontinued the study because of dizziness, and another patient discontinued the study to start open-label mexiletine therapy. No serious adverse event occurred.DISCUSSION:Mexiletine is a well tolerated and effective medication for controlling the symptom of muscle cramps in ALS.

    Clinical utility of anti-cytosolic 5\u27-nucleotidase 1A antibody in idiopathic inflammatory myopathies

    Get PDF
    OBJECTIVE: To define the clinicopathologic features and diagnostic utility associated with anti-cytosolic 5\u27-nucleotidase 1A (NT5C1A) antibody seropositivity in idiopathic inflammatory myopathies (IIMs). METHODS: Anti-NT5C1A antibody status was clinically tested between 2014 and 2019 in the Washington University neuromuscular clinical laboratory. Using clinicopathologic information available for 593 patients, we classified them as inclusion body myositis (IBM), dermatomyositis, antisynthetase syndrome, immune-mediated necrotizing myopathy (IMNM), nonspecific myositis, or noninflammatory muscle diseases. RESULTS: Of 593 patients, anti-NT5C1A antibody was found in 159/249 (64%) IBM, 11/53 (21%) dermatomyositis, 7/27 (26%) antisynthetase syndrome, 9/76 (12%) IMNM, 20/84 (24%) nonspecific myositis, and 6/104 (6%) noninflammatory muscle diseases patients. Among patients with IBM, anti-NT5C1A antibody seropositive patients had more cytochrome oxidase-negative fibers compared with anti-NT5C1A antibody seronegative patients. Among 14 IBM patients initially negative for anti-NT5C1A antibody, three patients (21%) converted to positive. Anti-NT5C1A antibody seropositivity did not correlate with malignancy, interstitial lung disease, response to treatments in dermatomyositis, antisynthetase syndrome, and IMNM, or survival in IIMs. INTERPRETATION: Anti-NT5C1A antibody is associated with IBM. However, the seropositivity can also be seen in non-IBM IIMs and it does not correlate with any prognostic factors or survival

    Longitudinal Screening Detects Cognitive Stability and Behavioral Deterioration in ALS Patients

    Get PDF
    Objective. To evaluate longitudinal cognitive/behavioral change over 12 months in participants enrolled in the ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS). Methods. We analyzed data from 294 ALS participants, 134 of whom were studied serially. Change over time was evaluated controlling for age, sex, symptom duration, education, race, and ethnicity. Using multiple regression, we evaluated associations among decline in ALS Functional Rating Scale-Revised (ALSFRS-R) scores, forced vital capacity (FVC), and cognitive/behavioral changes. Change in cognitive/behavioral subgroups was assessed using one-way analyses of covariance. Results. Participants with follow-up data had fewer baseline behavior problems compared to patients without follow-up data. We found significant worsening of behavior (ALS Cognitive Behavioral Screen (ALS CBS) behavioral scale, p \u3c 0.001; Frontal Behavioral Inventory-ALS (FBI-ALS) disinhibition subscale, p = 0.044). Item analysis suggested change in frustration tolerance, insight, mental rigidity, and interests (p \u3c 0.05). Changes in ALSFRS-R correlated with the ALS CBS. Worsening disinhibition (FBI-ALS) did not correlate with ALSFRS-R, FVC, or disease duration. Conclusion. We did not detect cognitive change. Behavioral change was detected, and increased disinhibition was found among patients with abnormal baseline behavioral scores. Disinhibition changes did not correlate with disease duration or progression. Baseline behavioral problems were associated with advanced, rapidly progressive disease and study attrition

    Longitudinal Screening Detects Cognitive Stability and Behavioral Deterioration in ALS Patients.

    Get PDF
    ObjectiveTo evaluate longitudinal cognitive/behavioral change over 12 months in participants enrolled in the ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS).MethodsWe analyzed data from 294 ALS participants, 134 of whom were studied serially. Change over time was evaluated controlling for age, sex, symptom duration, education, race, and ethnicity. Using multiple regression, we evaluated associations among decline in ALS Functional Rating Scale-Revised (ALSFRS-R) scores, forced vital capacity (FVC), and cognitive/behavioral changes. Change in cognitive/behavioral subgroups was assessed using one-way analyses of covariance.ResultsParticipants with follow-up data had fewer baseline behavior problems compared to patients without follow-up data. We found significant worsening of behavior (ALS Cognitive Behavioral Screen (ALS CBS) behavioral scale, p < 0.001; Frontal Behavioral Inventory-ALS (FBI-ALS) disinhibition subscale, p = 0.044). Item analysis suggested change in frustration tolerance, insight, mental rigidity, and interests (p < 0.05). Changes in ALSFRS-R correlated with the ALS CBS. Worsening disinhibition (FBI-ALS) did not correlate with ALSFRS-R, FVC, or disease duration.ConclusionWe did not detect cognitive change. Behavioral change was detected, and increased disinhibition was found among patients with abnormal baseline behavioral scores. Disinhibition changes did not correlate with disease duration or progression. Baseline behavioral problems were associated with advanced, rapidly progressive disease and study attrition
    corecore