37 research outputs found

    Observations of simultaneous sperm release and larval planulation suggest reproductive assurance in the coral Pocillopora acuta

    Get PDF
    Despite being an extensively studied group of corals, the reproductive biology of the scleractinian genus Pocillopora remains a mystery. Pocillopora acuta has been proposed to exhibit a mixed reproductive mode, sexually producing gametes (sperm and eggs) and asexually brooding larvae simultaneously within a single colony. Here, we report observations of night-time spawning of sperm during the peak monthly larval release period. We offer a new hypothesis for the regulation of sexual and asexual reproduction in the species and posit that sexual reproduction may occur more often than previously suggested. However, the success of internal oocyte fertilization and subsequent zygote development is dependent on sperm making contact with a fertile colony. We hypothesize that asexual development of larvae occurs when sperm is absent, but more extensive genetic, genomic, and histological data are required to determine the pathway by which unfertilized oocytes may develop. We also propose that this mixed mode of reproduction is an adaptation to mating failure, common in sessile marine invertebrates. The reproductive assurance enjoyed by the species may therefore be the key to its ecological and evolutionary persistence

    Wound healing and regeneration in the reef building coral Acropora millepora

    Get PDF
    Branching scleractinian corals are niche-constructing organisms, providing continuously-growing, structural foundation for spectacularly biodiverse coral reef ecosystems. A large part of their success lies in the ability to quickly regenerate following mechanical damage. Even now, when the corals undergo great decline due to anthropogenic weather and storm extremes, it is surprising how little is known about molecular mechanisms governing regeneration in these iconic organisms. In this study, we used RNA-seq to identify genes involved in the regeneration of Acropora millepora, starting with the initial wound closure up to complete rebuilding of lost structures. Many of the differentially expressed genes we found in the wound healing steps are homologues of genes known to be involved in wound healing and regeneration of bilaterian and other cnidarian species, prominently including multiple components of FGF and Wnt signalling pathways. Comparison between genes involved in wound healing and continuous growth of the colony demonstrates both similarity and distinctiveness of the genetic programmes controlling these processes. A striking example is specific expression of c-Fos, a transcription factor with conserved role in early injury response, during the earliest stages of wound healing of A. millepora. By comparing results obtained in diverse experimental conditions including a closed-loop, recirculating aquarium and a flow-through system of marine station, we have demonstrated feasibility of using zooxanthellate scleractinian corals as experimental models in fundamental biology research, including studies of regeneration

    Analyses of corallimorpharian transcriptomes provide new perspectives on the evolution of calcification in the Scleractinia (corals)

    Get PDF
    Corallimorpharians (coral-like anemones) have a close phylogenetic relationship with scleractinians (hard corals) and can potentially provide novel perspectives on the evolution of biomineralization within the anthozoan subclass Hexacorallia. A survey of the transcriptomes of three representative corallimorpharians led to the identification of homologs of some skeletal organic matrix proteins (SOMPs) previously considered to be restricted to corals. Carbonic anhydrases (CAs), which are ubiquitous proteins involved in CO2 trafficking, are involved in both coral calcification and photosynthesis by endosymbiotic Symbiodinium (zooxanthellae). These multiple roles are assumed to place increased demands on the CA repertoire and have presumably driven the elaboration of the complex CA repertoires typical of corals (note that "corals" are defined here as reef-building Scleractinia). Comparison of the CA inventories of corallimorpharians with those of corals reveals that corals have specifically expanded the secreted and membrane-associated type CAs, whereas similar complexity is observed in the two groups with respect to other CA types. Comparison of the CA complement of the nonsymbiotic corallimorph Corynactis australis with that of Ricordea yuma, a corallimorph which normally hosts Symbiodinium, reveals similar numbers and distribution of CA types and suggests that an expansion of the CA repertoire has been necessary to enable calcification but may not be a requirement to enable symbiosis. Consistent with this idea, preliminary analysis suggests that the CA complexity of zooxanthellate and nonzooxanthellate sea anemones is similar. The comparisons above suggest that although there are relatively few new genes in the skeletal organic matrix of corals (which controls the skeleton deposition process), the evolution of calcification required an expanded repertoire of secreted and membrane- associated CAs

    Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef

    Get PDF
    Increases in the frequency of perturbations that drive coral community structure, such as severe thermal anomalies and high intensity storms, highlight the need to understand how coral communities recover following multiple disturbances. We describe the dynamics of cover and assemblage composition of corals on exposed inshore reefs in the Palm Islands, central Great Barrier Reef, over 19 years encapsulating major disturbance events such as the severe bleaching event in 1998 and Cyclone Yasi in 2011, along with other minor storm and heat stress events. Over this time, 47.8% of hard coral cover was lost, with a concomitant shift in coral assemblage composition due to taxon-specific rates of mortality during the disturbances, and asymmetric recovery in the aftermath thereof. High recruitment rates of some broadcast-spawning corals, particularly corymbose Acropora spp., even in the absence of adult colonies, indicate that a strong external larval supply replenished the stocks. Conversely, the time required for recovery of slow-growing coral morphologies and life histories was longer than the recurrence times of major disturbances. With interludes between bleaching and cyclones predicted to decrease, the probability of another severe disturbance event before coral cover and assemblage composition approximates historical levels suggests that reefs will continue to erode

    Conservation and turnover of miRNAs and their highly complementary targets in early branching animals

    Get PDF
    MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover

    Morphological stasis masks ecologically divergent coral species on tropical reefs

    Get PDF
    Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden'' conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively

    Molecular techniques and their limitations shape our view of the holobiont

    Get PDF
    It is now recognised that the biology of almost any organism cannot be fully understood without recognising the existence and potential functional importance of associated microbes. Arguably, the emergence of this holistic viewpoint may never have occurred without the development of a crucial molecular technique, 16S rDNA amplicon sequencing, which allowed microbial communities to be easily profiled across a broad range of contexts. A diverse array of molecular techniques are now used to profile microbial communities, infer their evolutionary histories, visualise them in host tissues, and measure their molecular activity. In this review, we examine each of these categories of measurement and inference with a focus on the questions they make tractable, and the degree to which their capabilities and limitations shape our view of the holobiont

    An Indo-Pacifc coral spawning database

    Get PDF
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification
    corecore