12 research outputs found

    Desempenho agronômico das cultivares Karina ty® e Santa Clara vf 5600® de tomateiro tutorado cultivadas com adubação química e organomineral

    Get PDF
    Monografia (graduação)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, 2015.Analisando a cultura do tomate como uma das oleráceas mais importantes e de maior exigência em uma adequada adubação,o presente trabalho teve como objetivo avaliar o desempenho agronômico de duas cultivares de tomate tipo “mesa” cultivados em sistemas organomineral e convencional, com uso de diferentes fertilizantes químicos e orgânicos. Este experimento foi conduzido na Fazenda Água Limpa,em Brasília-DF. Os experimentos foram conduzidos em blocos ao acaso com três repetições, sendo oito tratamentos em dois experimentos e duas cultivares de tomate tipo mesa, Karina e Santa Clara. Os tratamentos foram água (branco), Biofertilizante (fermentado à base de peixe e pena de galinha), Bion® (ativador de plantas), Gesso (gesso agrícola com pH corrigido para 4,0) Hortiplus® (fosfito de potássio), Megafol® (fertilizante foliar com base em matéria orgânica), Químico (coquetel utilizado normalmente pelos produtores da região) e Silício (óxido de silício). Em relação aos tratamentos utilizados, somente no experimento realizado com a cultivar de polinização aberta, Santa Clara, foi possível encontrar diferenças entre os tratamentos para as variáveis resposta PT(Peso total) e NFT(Número total de frutos) utilizando o produto comercial Bion® 500WG, em cultivo convencional. No cultivo organomineral, os tratamentos que apresentaram menores valores de peso total foram gesso agrícola e água, com 1872 e 1191 gramas, respectivamente nos dois cultivos mencionados.Analyzing tomato crop as one of the most important vegetable crops and greater demand for adequate fertilization, this study aimed to evaluate the agronomic performance of two cultivars of tomato type "table" grown in organic mineral and conventional systems, using different chemical and organic fertilizers. This experiment was conducted at FazendaÁguaLimpa, in Brasilia. The experiments were conducted in a randomized block design with three replications and eight treatments in both experiments and two cultivars of tomato type table, Karina and Santa Clara. Treatments were water (White), Biofertilizer (fermented based on fish and chicken feather), Bion® (activator of plants), gypsum (gypsum with pH adjusted to 4.0) Hortiplus® (potassium phosphite), Megafol ® (foliar fertilizer-based organic matter), chemicals (cocktail normally used by local farmers) and silicon (silicon oxide). Regarding the treatments, only on the experiment with open-pollinated cultivar, Santa Clara, were unable to find differences between treatments for the variables PT response (total weight) and NTF (Total number of fruits) using the commercial product Bion® 500WG in conventional cultivation. In the organic-farming the treatments had lower total weight values were agricultural and water plaster, with 1872 and 1191 grams, respectively in the two mentioned cultures

    ADUBAÇÃO NITROGENADA E USO DE REGULADOR DE CRESCIMENTO NA PRODUÇÃO DE TRIGO DE SEQUEIRO

    Get PDF
    A adubação nitrogenada é uma importante prática de manejo em gramíneas e bastante complexa, em função dos diversos fatores que influenciam, como condições climáticas, sistemas de cultivo, doses e fontes disponíveis. Objetivou-se com o trabalho, avaliar diferentes doses de nitrogênio em cobertura e o efeito do regulador de crescimento etil trinexapac no trigo (Triticum aestivum L.). O experimento foi em blocos casualizados em esquema fatorial 5x2, com 4 repetições. Os tratamentos foram compostos por cinco doses de nitrogênio aplicado em cobertura (0, 20, 40, 80 e 160 kg ha-1 de N) e duas doses do etil trinexapac (0 e 100 g ha-1 do ingrediente ativo) na cultura do trigo. Foram avaliadas: Massa de matéria seca, altura de planta, altura da folha bandeira, altura de inserção de espiga, distância fonte e dreno, comprimento de espiga, número de espigas por metro quadrado, número de espiguetas por espiga, fertilidade das espiguetas, número de grãos por espiga, número de grãos por espigueta, massa de mil grãos, produtividade de grãos), peso hectolitro e proteína dos grãos. O regulador de crescimento altera os componentes morfológicos do trigo, porém não altera os componentes produtivos e a produtividade de grãos, não justificando seu uso nas condições em que ocorreu o estudo. A adubação nitrogenada não altera os componentes morfológicos das plantas do trigo, mas aumenta o número de espigas por m2 (afilhos) até dose de 52 kg ha-1 de N, refletindo no aumento da produtividade até a dose de 59 kg ha-1

    Relato sobre a assistência de enfermagem à gestante com incompetência istmo cervical

    Get PDF
    O objetivo do artigo foi relatar a experiência na aplicação do processo de enfermagem por acadêmicos de enfermagem a uma gestante com incompetência istmo cervical. Trata-se de um estudo descritivo, do tipo relato de experiência realizado em um serviço de atenção hospitalar no interior cearense, em abril de 2019. Todas as etapas do Processo de Enfermagem somadas à consulta obstétrica. O foco principal do acompanhamento esteve em diagnósticos de enfermagem como: risco de binômio mãe-feto perturbado relacionado a complicações gestacionais e risco de sangramento relacionado a complicação gestacional, elaborados pelos estudantes; além de ações de monitoramento constante e escuta qualificada que corroboraram para o bom andamento do quadro clínico. O cuidado à gestante com incompetência foi possível através da aplicação do processo de enfermagem. Nesse sentido possibilitou a promoção da saúde, melhora do estado materno fetal, potencializou  o cuidado de enfermagem no contexto investigado possibilitando um olhar centrado no indivíduo, qualificando o estudante para a postura profissional da saúde

    Risk of adverse outcomes in offspring with RT-PCR confirmed prenatal Zika virus exposure: an individual participant data meta-analysis of 13 cohorts in the Zika Brazilian Cohorts

    No full text
    The Zika Brazilian Cohorts Consortium was supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) (grant number 404861/2018-0). The individual studies participating in the ZBC-Consortium were funded by: Wellcome Trust and the United Kingdom’s Department for International Development (grant numbers: 205377/Z/16/Z; 201870/Z/16/Z). European Union’s Horizon 2020 research and innovation programme under ZikaPLAN (grant number 734584). Wellcome Trust - Research Enrichment in Epidemic Situation (grant number 107779/Z/15/Z; with ER1505 & ER1601). Medical Research Council on behalf of the Newton Fund and Wellcome Trust (grant number MC_PC_15088). National Institutes of Health/National Institute of Allergy and Infectious Diseases (grant number RO1/ AI140718). Fondation Christophe et Rodolphe Mérieux. National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) (grant numbers 443875/2018-9; 440573/2016-5; 441098/2016-9; 305090/2016-0; 307282/2017-1; 304476/2018-8; 465549/2014-4; 440763/2016-9; 309722/2017-9; 306708/2014-0; 440577/2016-0). Coordination for the improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes) (grant numbers 88881.130813/2016-01; 88887.116627/2016-01; 88887.136366/2017-00). Ministry of Health of Brazil - Emergency Response in Public Health - Zika virus and Microcephaly (Ministério da Saúde de Brasil - Resposta à Emergência em Saúde Pública – Zika vírus e Microcefalia) (grant number 837058/2016). Department of Science and Technology (Departamento de Ciência e Tecnologia - DECIT) (grant numbers 25000.072811/2016-19; 440839/2016-5). Foundation of Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP) (grant numbers 2016/08578-0; 2017/21688-1; 2013/21719-3; 2016/ 15021-1; 2015/12295-0; 2016/05115-9). Foundation of Research Support of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ) (grant numbers E-26/201.351/2016; E-18/ 2015TXB; E-26/202.862/2018; E 26/010.002477/2016). Foundation of Support for Research and Scientific and Technological Development of Maranhão (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão – FAPEMA) (grant number 008/2016). Brazilian Ministry of Health (Ministério da Saúde – MS) (grant number 929698560001160-02). Evandro Chagas Institute/Brazilian Ministry of Health (Instituto Evandro Chagas/Ministério da Saúde). Foundation of Research Support of the State of Goiás (Fundação de Amparo à Pesquisa do Estado de Goiás – FAPEG) (number grant 2017/10267000531). Foundation of Research Support of the State of Rio Grande do Sul (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS) (grant number 17/2551-0000521-0). Foundation to Support Teaching, Research and Assistance at Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto) and São Paulo State Department of Health (Secretaria de Saúde do Estado de São Paulo). Support Foundation of Pernambuco Science and Technology (Fundação de Amparo à Ciência e Tecnologia de Pernambuco – FACEPE) (grant numbers APQ-0172-4.01/16; APQ-0192-4.01/17; APQ0793-4.01/17).Federal University of Pernambuco. Postgraduate Program in Tropical Medicine. Recife, PE, Brazil / University of Pernambuco. Post-Graduation in Health Sciences. Recife, PE, Brazil.University of Pernambuco. Post-Graduation in Health Sciences. Recife, PE, Brazil.London School of Hygiene & Tropical Medicine. Department of Infectious Disease Epidemiology. London, UK.Federal University of Pernambuco. Postgraduate Program in Collective Health. Recife, PE, Brazil.University of Pernambuco. Post-Graduation in Health Sciences. Recife, PE, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil.Ribeirão Preto Medical School. Department of Pediatrics. Ribeirão Preto, SP, Brazil.Ribeirão Preto Medical School. Department of Gynecology and Obstetrics. Ribeirão Preto, SP, Brazil.Ribeirão Preto Medical School. Department of Gynecology and Obstetrics. Ribeirão Preto, SP, Brazil.Ribeirão Preto Medical School. Department of Pediatrics. Ribeirão Preto, SP, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil.Instituto Fernandes Figueira. Clinical Research Unit. Rio de Janeiro, RJ, Brazil.Oswaldo Cruz Foundation. Instituto Fernandes Figueira. Clinical Research Unit. Rio de Janeiro, RJ, Brazil.Oswaldo Cruz Foundation. Instituto Fernandes Figueira. Obstretics. Rio de Janeiro, RJ, Brazil.University of California. David Geffen School of Medicine. Department of Pediatrics. Los Angeles, CA, Estados Unidos.Oswaldo Cruz Foundation. Research Center Aggeu Magalhães. Recife, PE, Brazil.London School of Hygiene & Tropical Medicine. Department of Infectious Disease Epidemiology. London, UK.Oswaldo Cruz Foundation. Research Center Aggeu Magalhães. Recife, PE, Brazil.Altino Ventura Foundation. Department of Ophthalmology. Recife, PE, Brazil / Pernambuco Eyes Hospital. Recife, PE, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Medicine School of São José do Rio Preto. Department of Infectious Disease. São José do Rio Preto, SP, Brazil.Medicine School of São José do Rio Preto. Department of Infectious Disease. São José do Rio Preto, SP, Brazil.Medicine School of São José do Rio Preto. Department of Gynecology and Obstetrics. São José do Rio Preto, SP, Brazil.Medicine School of Jundiaí. Infectious Pediatric Laboratory. Jundiaí, SP, Brazil.Federal University of São Paulo. Department of Fetal Medicine. São Paulo, SP, Brazil.Father Anchieta University Center. Nursing School. Jundiaí, SP, Brazil.Federal University of São Paulo. Paulista School of Medicine. Departament of Obstetrics. São Paulo, SP, Brazil.Federal University of Goiás. Institute of Tropical Pathology and Public Health. Goiânia, GO, Brazil.Health Secretariat of Goiás State. Maternal and Child Hospital. Goiânia, GO, Brazil.Federal University of São Paulo. Paulista School of Medicine. Departament of Obstetrics. São Paulo, SP, Brazil.Health Secretariat of Goiás State. Maternal and Child Hospital. Goiânia, GO, Brazil.Universidade Federal do Rio Grande do Sul. Hospital das Clinicas de Porto Alegre. Departamento de Genética. Porto Alegre, RS, Brazil.City Hall of Tangará da Serra, Municipal Health Department, Tangará da Serra, MT, Brazil.Federal University of Campina Grande. Medical Academic Unit. Campina Grande, PB, Brazil.Federal University of Campina Grande. Medical Academic Unit. Campina Grande, PB, Brazil.Federal University of Rio de Janeiro. Department of Pediatrics. Rio de Janeiro, RJ, Brazil.D’Or Institute for Research & Education. Department of Pediatrics. Rio de Janeiro, RJ, Brazil.Departmentiversity of Rio de Janeiro Maternity School. Department of Obstectrics. Rio de Janeiro, RJ, Brazil.Departmentiversity of Rio de Janeiro Maternity School. Department of Obstectrics. Rio de Janeiro, RJ, Brazil.Reference Maternity Prof. José Maria de Magalhães Netto. Bahia Health Department, Salvador, BA, Brazil.Oswaldo Cruz Foundation. Gonçalo Moniz Institute. Salvador, BA, Brazil.Oswaldo Cruz Foundation. Gonçalo Moniz Institute. Salvador, BA, Brazil.Federal University of Rio de Janeiro. Department of Infecitous Diseases. Rio de Janeiro, RJ, Brazil.Federal University of Rio de Janeiro. Department of Infecitous Diseases. Rio de Janeiro, RJ, Brazil.Oswaldo Cruz Foundation. Gonçalo Moniz Institute. Salvador, BA, Brazil.Oswaldo Cruz Foundation. Leonidas and Maria Deane Institute. Manaus, AM, Brazil.University of Amazonas State. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Doctor Heitor Vieira Dourado Tropical Medicine Foundation. Postgraduate Program in Tropical Medicine. Manaus, AM, Brazil / Oswaldo Cruz Foundation. Leonidas and Maria Deane Institute. Manaus, AM, Brazil.Oswaldo Cruz Foundation. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brazil.Background: Knowledge regarding the risks associated with Zika virus (ZIKV) infections in pregnancy has relied on individual studies with relatively small sample sizes and variable risk estimates of adverse outcomes, or on surveillance or routinely collected data. Using data from the Zika Brazilian Cohorts Consortium, this study aims, to estimate the risk of adverse outcomes among offspring of women with RT-PCR-confirmed ZIKV infection during pregnancy and to explore heterogeneity between studies. Methods: We performed an individual participant data meta-analysis of the offspring of 1548 pregnant women from 13 studies, using one and two-stage meta-analyses to estimate the absolute risks. Findings: Of the 1548 ZIKV-exposed pregnancies, the risk of miscarriage was 0.9%, while the risk of stillbirth was 0.3%. Among the pregnancies with liveborn children, the risk of prematurity was 10,5%, the risk of low birth weight was 7.7, and the risk of small for gestational age (SGA) was 16.2%. For other abnormalities, the absolute risks were: 2.6% for microcephaly at birth or first evaluation, 4.0% for microcephaly at any time during follow-up, 7.9% for neuroimaging abnormalities, 18.7% for functional neurological abnormalities, 4.0% for ophthalmic abnormalities, 6.4% for auditory abnormalities, 0.6% for arthrogryposis, and 1.5% for dysphagia. This risk was similar in all sites studied and in different socioeconomic conditions, indicating that there are not likely to be other factors modifying this association. Interpretation: This study based on prospectively collected data generates the most robust evidence to date on the risks of congenital ZIKV infections over the early life course. Overall, approximately one-third of liveborn children with prenatal ZIKV exposure presented with at least one abnormality compatible with congenital infection, while the risk to present with at least two abnormalities in combination was less than 1.0%

    Risk of adverse outcomes in offspring with RT-PCR confirmed prenatal Zika virus exposure: an individual participant data meta-analysis of 13 cohorts in the Zika Brazilian Cohorts ConsortiumResearch in context

    No full text
    Summary: Background: Knowledge regarding the risks associated with Zika virus (ZIKV) infections in pregnancy has relied on individual studies with relatively small sample sizes and variable risk estimates of adverse outcomes, or on surveillance or routinely collected data. Using data from the Zika Brazilian Cohorts Consortium, this study aims, to estimate the risk of adverse outcomes among offspring of women with RT-PCR-confirmed ZIKV infection during pregnancy and to explore heterogeneity between studies. Methods: We performed an individual participant data meta-analysis of the offspring of 1548 pregnant women from 13 studies, using one and two-stage meta-analyses to estimate the absolute risks. Findings: Of the 1548 ZIKV-exposed pregnancies, the risk of miscarriage was 0.9%, while the risk of stillbirth was 0.3%. Among the pregnancies with liveborn children, the risk of prematurity was 10,5%, the risk of low birth weight was 7.7, and the risk of small for gestational age (SGA) was 16.2%. For other abnormalities, the absolute risks were: 2.6% for microcephaly at birth or first evaluation, 4.0% for microcephaly at any time during follow-up, 7.9% for neuroimaging abnormalities, 18.7% for functional neurological abnormalities, 4.0% for ophthalmic abnormalities, 6.4% for auditory abnormalities, 0.6% for arthrogryposis, and 1.5% for dysphagia. This risk was similar in all sites studied and in different socioeconomic conditions, indicating that there are not likely to be other factors modifying this association. Interpretation: This study based on prospectively collected data generates the most robust evidence to date on the risks of congenital ZIKV infections over the early life course. Overall, approximately one-third of liveborn children with prenatal ZIKV exposure presented with at least one abnormality compatible with congenital infection, while the risk to present with at least two abnormalities in combination was less than 1.0%. Funding: National Council for Scientific and Technological Development - Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq); Wellcome Trust and the United Kingdom's Department for International Development; European Union's Horizon 2020 research and innovation program; Medical Research Council on behalf of the Newton Fund and Wellcome Trust; National Institutes of Health/National Institute of Allergy and Infectious Diseases; Foundation Christophe et Rodolphe Mérieux; Coordination for the improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Capes); Ministry of Health of Brazil; Brazilian Department of Science and Technology; Foundation of Research Support of the State of São Paulo (Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP); Foundation of Research Support of the State of Rio de Janeiro (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ); Foundation of Support for Research and Scientific and Technological Development of Maranhão; Evandro Chagas Institute/Brazilian Ministry of Health (Instituto Evandro Chagas/Ministério da Saúde); Foundation of Research Support of the State of Goiás (Fundação de Amparo à Pesquisa do Estado de Goiás – FAPEG); Foundation of Research Support of the State of Rio Grande do Sul (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul – FAPERGS); Foundation to Support Teaching, Research and Assistance at Hospital das Clínicas, Faculty of Medicine of Ribeirão Preto (Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto); São Paulo State Department of Health (Secretaria de Saúde do Estado de São Paulo); Support Foundation of Pernambuco Science and Technology (Fundação de Amparo à Ciência e Tecnologia de Pernambuco – FACEPE)

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Núcleos de Ensino da Unesp: artigos 2007

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore