69 research outputs found
Altered Patterns of Gene Expression Underlying the Enhanced Immunogenicity of Radiation-Attenuated Schistosomes
Schistosoma mansoni is a blood-dwelling parasitic worm that causes schistosomiasis in humans throughout Africa and parts of South America. A vaccine would enhance attempts to control and eradicate the disease that currently relies on treatment with a single drug. Although a manufactured vaccine has yet to generate high levels of protection, this can be achieved with infective parasite larvae that have been disabled by exposure to radiation. How these weakened parasites are able to induce protective immunity when normal parasites do not, is the question addressed by our experiments. We have used a technique of gene expression profiling to compare the patterns in normal and disabled parasites, over the period when they would trigger an immune response in the host. We found that only a handful of genes were differentially expressed, all of them diminished in the disabled parasite. However, a more sensitive technique to examine groups of genes revealed that those involved in nervous system and muscle function were depressed in the disabled parasites. We suggest that reduced mobility of these larvae permits them longer contact with the immune system, thus enabling a strong protective immune response to develop
Alternatively Activated Mononuclear Phagocytes from the Skin Site of Infection and the Impact of IL-4Rα Signalling on CD4+T Cell Survival in Draining Lymph Nodes after Repeated Exposure to Schistosoma mansoni Cercariae
In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMα (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMα, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMα resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4Rα, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4Rα compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RαKO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4Rα may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death
Chimpanzees modify intentional gestures to coordinate a search for hidden food
Humans routinely communicate to coordinate their activities, persisting and elaborating signals to pursue goals that cannot be accomplished individually. Communicative persistence is associated with complex cognitive skills such as intentionality, because interactants modify their communication in response to another's understanding of their meaning. Here we show that two language-trained chimpanzees effectively use intentional gestures to coordinate with an experimentally naive human to retrieve hidden food, providing some of the most compelling evidence to date for the role of communicative flexibility in successful coordination in nonhumans. Both chimpanzees (named Panzee and Sherman) increase the rate of nonindicative gestures when the experimenter approaches the location of the hidden food. Panzee also elaborates her gestures in relation to the experimenter's pointing, which enables her to find food more effectively than Sherman. Communicative persistence facilitates effective communication during behavioural coordination and is likely to have been important in shaping language evolution
Antibody reactivity against potato apyrase, a protein that shares epitopes with Schistosoma mansoni ATP diphosphohydrolase isoforms, in acute and chronically infected mice, after chemotherapy and reinfection
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (~30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis
Transcriptional Changes in Schistosoma mansoni during Early Schistosomula Development and in the Presence of Erythrocytes
Schistosome blood flukes cause more mortality and morbidity than any other human worm infection, but current control methods primarily rely on a single drug. There is a desperate need for new approaches to control this parasite, including vaccines. People become infected when the free-swimming larva, the cercaria, enters through the skin and becomes the schistosomulum. Schistosomula are susceptible to immune responses during their first few days in the host before they become adult parasites. We characterised the genes that these newly transformed parasites switch on when they enter the host to identify molecules that are critical for survival in the human host. Some of these highly up-regulated genes can be targeted for future development of new vaccines and drugs
Circulating CD14brightCD16+ 'intermediate' monocytes exhibit enhanced parasite pattern recognition in human helminth infection.
Circulating monocyte sub-sets have recently emerged as mediators of divergent immune functions during infectious disease but their role in helminth infection has not been investigated. In this study we evaluated whether 'classical' (CD14brightCD16-), 'intermediate' (CD14brightCD16+), and 'non-classical' (CD14dimCD16+) monocyte sub-sets from peripheral blood mononuclear cells varied in both abundance and ability to bind antigenic material amongst individuals living in a region of Northern Senegal which is co-endemic for Schistosoma mansoni and S. haematobium. Monocyte recognition of excretory/secretory (E/S) products released by skin-invasive cercariae, or eggs, of S. mansoni was assessed by flow cytometry and compared between S. mansoni mono-infected, S. mansoni and S. haematobium co-infected, and uninfected participants. Each of the three monocyte sub-sets in the different infection groups bound schistosome E/S material. However, 'intermediate' CD14brightCD16+ monocytes had a significantly enhanced ability to bind cercarial and egg E/S. Moreover, this elevation of ligand binding was particularly evident in co-infected participants. This is the first demonstration of modulated parasite pattern recognition in CD14brightCD16+ intermediate monocytes during helminth infection, which may have functional consequences for the ability of infected individuals to respond immunologically to infection
An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models
<p>Abstract</p> <p>Background</p> <p>The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A<sub>2A </sub>adenosine receptor (AR) agonist treated and untreated animals during experimental sepsis.</p> <p>Methods</p> <p>Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (<it>Escherichia coli </it>or <it>Staphylococcus aureus</it>) or lipopolysaccharide (LPS). Mice inoculated with live bacteria were treated with an A<sub>2A </sub>AR agonist (ATL313) or phosphate buffered saline (PBS), with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days.</p> <p>Results</p> <p>There was a significant survival benefit in mice infected with live <it>E. coli </it>(100% vs. 20%, <it>p </it>= 0.013) or <it>S. aureus </it>(60% vs. 20%, <it>p </it>= 0.02) when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, <it>p </it>= 0.005). The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (<it>p </it>< 0.05). Additionally, ATL313 increased the concentration of IL-10 under the same conditions (<it>p </it>< 0.05). Circulating white blood cell concentrations were higher in ATL313 treated animals (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.</p
Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data?
The laboratory mouse has been widely used to test the efficacy of schistosome vaccines and a long list of candidates has emerged from this work, many of them abundant internal proteins. These antigens do not have an additive effect when co-administered, or delivered as SWAP homogenate, a quarter of which comprises multiple candidates; the observed protection has an apparent ceiling of 40–50 %. We contend that the low level of maturation of penetrating cercariae (~32 % for Schistosoma mansoni) is a major limitation of the model since 68/100 parasites fail to mature in naïve mice due to natural causes. The pulmonary capillary bed is the obstacle encountered by schistosomula en route to the portal system. The fragility of pulmonary capillaries and their susceptibility to a cytokine-induced vascular leak syndrome have been documented. During lung transit schistosomula burst into the alveolar spaces, and possess only a limited capacity to re-enter tissues. The acquired immunity elicited by the radiation attenuated (RA) cercarial vaccine relies on a pulmonary inflammatory response, involving cytokines such as IFNγ and TNFα, to deflect additional parasites into the alveoli. A principal difference between antigen vaccine protocols and the RA vaccine is the short interval between the last antigen boost and cercarial challenge of mice (often two weeks). Thus, after antigen vaccination, challenge parasites will reach the lungs when both activated T cells and cytokine levels are maximal in the circulation. We propose that “protection” in this situation is the result of physiological effects on the pulmonary blood vessels, increasing the proportion of parasites that enter the alveoli. This hypothesis will explain why internal antigens, which are unlikely to interact with the immune response in a living schistosomulum, plus a variety of heterologous proteins, can reduce the level of maturation in a non-antigen-specific way. These proteins are “successful” precisely because they have not been selected for immunological silence. The same arguments apply to vaccine experiments with S. japonicum in the mouse model; this schistosome species seems a more robust parasite, even harder to eliminate by acquired immune responses. We propose a number of ways in which our conclusions may be tested
Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation
The Schistosoma mansoni Venom Allergen Like proteins (SmVALs) have been identified in the Transcriptome and Post-Genomic studies as targets for immune interventions. Two secreted members of the family were obtained as recombinant proteins in the native conformation. Antibodies produced against them showed that SmVAL4 was present mostly in cercarial secretions and SmVAL26 in egg secretions and that only the native SmVAL4 contained carbohydrate moieties. Due to concerns with potential allergic characteristics of this class of molecules, we have explored the mouse model of airway inflammation in order to investigate these properties in a more confined system. Sensitization and challenge with rSmVAL4, but not rSmVAL26, induced extensive migration of cells to the lungs, mostly eosinophils and macrophages; moreover, immunological parameters were also characteristic of an allergic inflammatory response. Our results showed that the allergic potential of this class of proteins can be variable and that the vaccine candidates should be characterized; the mouse model of airway inflammation can be useful to evaluate these properties
Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits
The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized (“genotype fitness”) instead of the classical fitness function (“phenotype fitness”). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature
- …