11 research outputs found

    Modeling SOA formation from the oxidation of intermediate volatility <i>n</i>-alkanes

    Get PDF
    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C<sub>8</sub>–C<sub>24</sub> series of <i>n</i>-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (<i>C</i><sub>OA</sub>). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing <i>C</i><sub>OA</sub>, (iii) SOA production rates increase with increasing <i>C</i><sub>OA</sub> and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when <i>C</i><sub>OA</sub> decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed

    Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Get PDF
    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species

    Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Get PDF
    The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (P^(vap)) were estimated with three commonly used structure activity relationships. The values of P^(vap) were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation), differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NO_x conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the P^vap estimation method

    Estimation of mechanistic parameters in the gas-phase reactions of ozone with alkenes for use in automated mechanism construction

    Get PDF
    Reaction with ozone is an important atmospheric removal process for alkenes. The ozonolysis reaction produces carbonyls and carbonyl oxides (Criegee intermediates, CI), which can rapidly decompose to yield a range of closed shell and radical products, including OH radicals. Consequently, it is essential to accurately represent the complex chemistry of Criegee intermediates in atmospheric models in order to fully understand the impact of alkene ozonolysis on atmospheric composition. A mechanism construction protocol is presented which is suitable for use in automatic mechanism generation. The protocol defines the critical parameters for describing the chemistry following the initial reaction, namely the primary carbonyl/CI yields from the primary ozonide fragmentation, the amount of stabilisation of the excited CI, the unimolecular decomposition pathways, rates and products of the CI, and the bimolecular rates and products of atmospherically important reactions of the stabilised CI (SCI). This analysis implicitly predicts the yield of OH from the alkene–ozone reaction. A comprehensive database of experimental OH, SCI and carbonyl yields has been collated using reported values in the literature and used to assess the reliability of the protocol. The protocol provides estimates of OH, SCI and carbonyl yields with root mean square errors of 0.13 and 0.12 and 0.14, respectively. Areas where new experimental and theoretical data would improve the protocol and its assessment are identified and discussed

    Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    Get PDF
    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dîme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3–C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud

    Structure-activity relationships to estimate the effective Henry's law constants of organics of atmospheric interest

    No full text
    International audienceAbstract. The Henry's law constant is a key property needed to address the multiphase behaviour of organics in the atmosphere. Methods that can reliably predict the values for the vast number of organic compounds of atmospheric interest are therefore required. The effective Henry's law constant H* in air-water systems at 298 K was compiled from literature for 488 organic compounds bearing functional groups of atmospheric relevance. This data set was used to assess the reliability of the HENRYWIN bond contribution method and the SPARC approach for the determination of H*. Moreover, this data set was used to develop GROMHE, a new Structure Activity Relationship (SAR) based on a group contribution approach. These methods estimate logH* with a Root Mean Square Error (RMSE) of 0.38, 0.61, and 0.73 log units for GROMHE, SPARC and HENRYWIN respectively. The results show that for all these methods the reliability of the estimates decreases with increasing solubility. The main differences among these methods lie in H* prediction for compounds with H* greater than 103 M atm−1. For these compounds, the predicted values of logH* using GROMHE are more accurate (RMSE = 0.53) than the estimates from SPARC or HENRYWIN

    A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dîme station – experimental versus modelled formation rates

    Get PDF
    The oxidative capacity of the cloud aqueous phase is investigated during three field campaigns from 2013 to 2014 at the top of the puy de Dîme station (PUY) in France. A total of 41 cloud samples are collected and the corresponding air masses are classified as highly marine, marine and continental. Hydroxyl radical (HO‱) formation rates (R<sub>HO‱</sub><sup>f</sup>) are determined using a photochemical setup (xenon lamp that can reproduce the solar spectrum) and a chemical probe coupled with spectroscopic analysis that can trap all of the generated radicals for each sample. Using this method, the obtained values correspond to the total formation of HO‱ without its chemical sinks. These formation rates are correlated with the concentrations of the naturally occurring sources of HO‱, including hydrogen peroxide, nitrite, nitrate and iron. The total hydroxyl radical formation rates are measured as ranging from approximately 2 × 10<sup>&minus;11</sup> to 4 × 10<sup>&minus;10</sup> M s<sup>−1</sup>, and the hydroxyl radical quantum yield formation (&Phi;<sub>HO‱</sub>) is estimated between 10<sup>&minus;4</sup> and 10<sup>−2</sup>. Experimental values are compared with modelled formation rates calculated by the model of multiphase cloud chemistry (M2C2), considering only the chemical sources of the hydroxyl radicals. The comparison between the experimental and the modelled results suggests that the photoreactivity of the iron species as a source of HO‱ is overestimated by the model, and H<sub>2</sub>O<sub>2</sub> photolysis represents the most important source of this radical (between 70 and 99 %) for the cloud water sampled at the PUY station (primarily marine and continental)
    corecore