47 research outputs found

    Figures et adéquation : dans la doctrine oratoire de Philippe Melanchthon

    Get PDF
    Soucieux de transmettre une doctrine, théologique et morale, une et sans confusion, Melanchthon s'applique à définir les critères d'une méthode capable de produire et préserver la clarté de la pensée. Il trouve chez les Scolastiques l'outil recherché, la dialectique aristotélicienne, qu'il faut restaurer dans sa forme idéale. Cela reste cependant insuffisant pour la foule des imperiti , uniquement sensible à l'amplification. Pour concilier figures et adéquation, il faut poser une équivalence entre procédures logiques et procédés rhétoriques, rapport que Cicéron réalise le plus parfaitement. Melanchthon conserve cependant à la rhétorique aristotélicienne des symboles le privilège d'une plus grande « proximité » avec les choses. Il lèguera cette oscillation à la rhétorique allemande du XVIe et du début du XVIIe siècle.Anxious to transmit a theological and moral doctrine free of confusion, Melanchthon strives to define the criteria of a method able to produce and sustain clarity of thought. In the scholastics he finds the sought-after tool, Aristotelian dialectics, which must be restored to their ideal form. However, this is not enough for the mass of the imperitiwho are sensible only to the amplification of speech. To conciliate the figures of speech on the one hand and appropriateness on the other, some sort of equivalence must be arrived at between logical procedures and rhetorical processes, a relation at which Cicero above all excelled. Melanchthon retains nevertheless for the Aristotelian rhetoric of symbols the privilege of a far greater "closeness" to things. He bequeathed this oscillation between the equivalence of logic and rhetoric and the Aristotelian rhetoric of symbols to the German rhetoric of the sixteenth and of the beginning of the seventeenth centuries

    Opposite Root Growth Phenotypes of hy5 versus hy5 hyh Mutants Correlate with Increased Constitutive Auxin Signaling

    Get PDF
    The Arabidopsis transcription factor HY5 controls light-induced gene expression downstream of photoreceptors and plays an important role in the switch of seedling shoots from dark-adapted to light-adapted development. In addition, HY5 has been implicated in plant hormone signaling, accounting for the accelerated root system growth phenotype of hy5 mutants. Mutants in the close HY5 homolog HYH resemble wild-type, despite the largely similar expression patterns and levels of HY5 and HYH, and the functional equivalence of the respective proteins. Moreover, the relative contribution of HYH to the overall activity of the gene pair is increased by an alternative HYH transcript, which encodes a stabilized protein. Consistent with the enhanced root system growth observed in hy5 loss-of-function mutants, constitutively overexpressed alternative HYH inhibits root system growth. Paradoxically, however, in double mutants carrying hy5 and hyh null alleles, the hy5 root growth phenotype is suppressed rather than enhanced. Even more surprisingly, compared to wild-type, root system growth is diminished in hy5 hyh double mutants. In addition, the double mutants display novel shoot phenotypes that are absent from either single mutant. These include cotyledon fusions and defective vasculature, which are typical for mutants in genes involved in the transcriptional response to the plant hormone auxin. Indeed, many auxin-responsive and auxin signaling genes are misexpressed in hy5 mutants, and at a higher number and magnitude in hy5 hyh mutants. Therefore, auxin-induced transcription is constitutively activated at different levels in the two mutant backgrounds. Our data support the hypothesis that the opposite root system phenotypes of hy5 single and hy5 hyh double mutants represent the morphological response to a quantitative gradient in the same molecular process, that is gradually increased constitutive auxin signaling. The data also suggest that HY5 and HYH are important negative regulators of auxin signaling amplitude in embryogenesis and seedling development

    Wafer-scale detachable monocrystalline Germanium nanomembranes for the growth of III-V materials and substrate reuse

    Full text link
    Germanium (Ge) is increasingly used as a substrate for high-performance optoelectronic, photovoltaic, and electronic devices. These devices are usually grown on thick and rigid Ge substrates manufactured by classical wafering techniques. Nanomembranes (NMs) provide an alternative to this approach while offering wafer-scale lateral dimensions, weight reduction, limitation of waste, and cost effectiveness. Herein, we introduce the Porous germanium Efficient Epitaxial LayEr Release (PEELER) process, which consists of the fabrication of wafer-scale detachable monocrystalline Ge NMs on porous Ge (PGe) and substrate reuse. We demonstrate monocrystalline Ge NMs with surface roughness below 1 nm on top of nanoengineered void layer enabling layer detachment. Furthermore, these Ge NMs exhibit compatibility with the growth of III-V materials. High-resolution transmission electron microscopy (HRTEM) characterization shows Ge NMs crystallinity and high-resolution X-ray diffraction (HRXRD) reciprocal space mapping endorses high-quality GaAs layers. Finally, we demonstrate the chemical reconditioning process of the Ge substrate, allowing its reuse, to produce multiple free-standing NMs from a single parent wafer. The PEELER process significantly reduces the consumption of Ge during the fabrication process which paves the way for a new generation of low-cost flexible optoelectronics devices.Comment: 17 pages and 6 figures along with 3 figures in supporting informatio

    Context-Dependent Dual Role of SKI8 Homologs in mRNA Synthesis and Turnover

    Get PDF
    Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3′ to 5′ exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3–GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context

    Les femmes de douleur. Maladie et sainteté dans l'Italie de la Contre-Réforme

    No full text

    Le cardinal de Lorraine et l’Academia Remensis

    No full text
    International audienc
    corecore