11 research outputs found

    Narrow-line-width UV bursts in the transition region above Sunspots observed by IRIS

    Full text link
    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si IV line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as Narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise of one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two datasets (a raster and a sit-and-stare dataset). Among these, four events are short-living with a duration of \sim10 mins while two last for more than 36 mins. All NUBs have Doppler shifts of 15--18 km/s, while the NUB found in sit-and-stare data possesses an additional component at \sim50 km/s found only in the C II and Mg II lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.Comment: 8 pages, 4 figures and 1 table, accepted for publication in ApJ

    Plasma parameters and geometry of cool and warm active region loops

    Full text link
    How the solar corona is heated to high temperatures remains an unsolved mystery in solar physics. In the present study we analyse observations of 50 whole active-region loops taken with the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode satellite. Eleven loops were classified as cool (<1 MK) and 39 as warm (1-2 MK) loops. We study their plasma parameters such as densities, temperatures, filling factors, non-thermal velocities and Doppler velocities. We combine spectroscopic analysis with linear force-free magnetic-field extrapolation to derive the three-dimensional structure and positioning of the loops, their lengths and heights as well as the magnetic field strength along the loops. We use density-sensitive line pairs from Fe XII, Fe XIII, Si X and Mg VII ions to obtain electron densities by taking special care of intensity background-subtraction. The emission-measure loci method is used to obtain the loop temperatures. We find that the loops are nearly isothermal along the line-of-sight. Their filling factors are between 8% and 89%. We also compare the observed parameters with the theoretical RTV scaling law. We find that most of the loops are in an overpressure state relative to the RTV predictions. In a followup study, we will report a heating model of a parallel-cascade-based mechanism and will compare the model parameters with the loop plasma and structural parameters derived here.Comment: ApJ, accepted for publicatio

    Eruptions from quiet Sun coronal bright points : II. Non-potential modelling

    Get PDF
    Support for VAPOR is provided by the U.S. National Science Foundation (grants # 03-25934 and 09-06379, ACI-14-40412), and by the Korea Institute of Science and Technology Information. C. M. thanks the National Natural Science Foundation of China (41474150). The HMI data are provided courtesy of NASA/SDO and corresponding science teams. The HMI data have been retrieved using the Stanford University’s Joint Science Operations Centre/Science Data Processing Facility. M.M. and K.G. thank the ISSI Bern for the support to the team “Observation-Driven Modelling of Solar Phenomena”.Context. Our recent observational study shows that the majority of coronal bright points (CBPs) in the quiet Sun are sources of one or more eruptions during their lifetime. Aims. Here, we investigate the non-potential time-dependent structure of the magnetic field of the CBP regions with special emphasison the time-evolving magnetic structure at the spatial locations where the eruptions are initiated. Methods. The magnetic structure is evolved in time using a non-linear force-free field (NLFFF) relaxation approach based on a timeseries of helioseismic and magnetic imager (HMI) longitudinal magnetograms. This results in a continuous time series of NLFFFs.The time series is initiated with a potential field extrapolation based on a magnetogram taken well before the time of the eruptions. This initial field is then evolved in time in response to the observed changes in the magnetic field distribution at the photosphere. The local and global magnetic field structures from the time series of NLFFF field solutions are analysed in the vicinity of the eruption sites at the approximate times of the eruptions. Results. The analysis shows that many of the CBP eruptions reported in a recent publication contain twisted flux tube located atthe sites of eruptions. The presence of flux ropes at these locations provides in many cases a direct link between the magnetic field structure, their eruption, and the observation of mini coronal mass ejections (mini-CMEs). It is found that all repetitive eruptions are homologous. Conclusions. The NLFFF simulations show that twisted magnetic field structures are created at the locations hosting eruptions inCBPs. These twisted structures are produced by footpoint motions imposed by changes in the photospheric magnetic field observations.The true nature of the micro-flares remains unknown. Further 3D data-driven magnetohydrodynamic modelling is required to show how these twisted regions become unstable and erupt.Publisher PDFPeer reviewe

    Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 - 2008

    Get PDF
    We identify the coronal sources of the solar winds sampled by the ACE spacecraft during 1999-2008, and examine the in situ solar wind properties as a function of wind sources. The standard two-step mapping technique is adopted to establish the photospheric footpoints of the magnetic flux tubes along which the ACE winds flow. The footpoints are then placed in the context of EIT 284~\AA\ images and photospheric magnetograms, allowing us to categorize the sources into four groups: coronal holes (CHs), active regions (ARs), the quiet Sun (QS), and "Undefined". This practice also enables us to establish the response to solar activity of the fractions occupied by each kind of solar winds, and of their speeds and O7+^{7+}/O6+^{6+} ratios measured in situ. We find that during the maximum phase, the majority of ACE winds originate from ARs. During the declining phase, CHs and ARs are equally important contributors to the ACE solar winds. The QS contribution increases with decreasing solar activity, and maximizes in the minimum phase when QS appear to be the primary supplier of the ACE winds. With decreasing activity, the winds from all sources tend to become cooler, as represented by the increasingly low O7+^{7+}/O6+^{6+} ratios. On the other hand, during each activity phase, the AR winds tend to be the slowest and associated with the highest O7+^{7+}/O6+^{6+} ratios, and the CH winds correspond to the other extreme, with the QS winds lying in between. Applying the same analysis method to the slow winds only, here defined as the winds with speeds lower than 500 km s1^{-1}, we find basically the same overall behavior, as far as the contributions of individual groups of sources are concerned. This statistical study indicates that QS regions are an important source of the solar wind during the minimum phase.Comment: 24 pages, 7 figures, accepted for publication in Solar Physic

    Sources of quasi-periodic propagating disturbances above a solar polar coronal hole

    Get PDF
    Quasi-periodic propagating disturbances (PDs) are ubiquitous in polar coronal holes on the Sun. It remains unclear as to what generates PDs. In this work, we investigate how the PDs are generated in the solar atmosphere by analyzing a fourhour dataset taken by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We find convincing evidence that spicular activities in the solar transition region as seen in the AIA 304 {\AA} passband are responsible for PDs in the corona as revealed in the AIA 171 {\AA} images. We conclude that spicules are an important source that triggers coronal PDs.Comment: Accepted for publication in ApJ

    Anisotropic nonthermal motions in the transition region of solar active regions

    No full text
    Context. We study the nonthermal motions in the transition region of active regions (ARs) using center-to-limb observations of Si I
    corecore