675 research outputs found

    Seeding of the nematic-isotropic phase transition by an electric field

    Get PDF
    In this paper, we use a relatively simple continuum model to investigate the effects of dielectric inhomogeneity within confined liquid crystal cells. Specifically, we consider, in planar, cylindrical and spherical geometries, the stability of a nematic-isotropic interface subject to an applied voltage. Depending on the magnitude of this voltage, the temperature and the geometry of the cell, the nematic region may shrink until the material is completely isotropic within the cell, grow until the nematic phase cells the cell or, in certain geometries, coexist with the isotropic phase. For planar geometry, no coexistence is found, but we are able to give analytical expressions for the critical voltage for an electric-field-induced phase transition as well as the critical wetting layer thickness for arbitrary applied voltage. In cells with cylindrical and spherical geometries, however, stable nematic-isotropic coexistence is predicted, the thickness of the nematic region being controllable by alteration of the applied voltage.</p

    Effects of weak anchoring on C1 and C2 chevron structures

    Get PDF
    We present a theoretical study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic C liquid crystals. We employ a continuum theory which allows for variable cone, azimuthal and layer tilt angles. Equilibrium profiles for the director cone and azimuthal angles in the C1 and C2 states are calculated from the standard Euler-Lagrange minimisation of the total energy of the system. By comparing the total energies of the C1 and C2 states we can determine the globally stable chevron profile and calculate the critical temperature for the C1-C2 transition, which depends on anchoring strength and pretilt angle variations

    Multistable alignment states in nematic liquid crystal filled wells

    Get PDF
    Two distinct, stable alignment states have been observed for a nematic liquid crystal confined in a layer with thickness of 12 μm and in square wells with sides of length between 20 and 80 μm. The director lies in the plane of the layer and line defects occur in two corners of the squares. The positions of the defects determine whether the director orientation is across the diagonal or is parallel to two opposite edges of the square. The device is multistable because both the diagonal and parallel states are stable when rotated by multiples of 90° in plane

    Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material

    Get PDF
    The time-dependent periodic distortion profile in a nematic liquid crystal phase grating has been measured from the displacement of tilt fringes in a Mach-Zehnder interferometer. A 0.2 Hz squarewave voltage was applied to alternate stripe electrodes in an interdigitated electrode geometry. The time-dependent distortion profile is asymmetric with respect to the polarity of the applied voltage and decays with time during each half period due to ionic shielding. This asymmetry in the response allows the determination of the sum of the flexoelectric coefficients (e1+e3) using nematic continuum theory since the device geometry does not possess inherent asymmetry

    Boundary effects in nematic liquid crystal layers.

    Get PDF

    RISE: a fast-readout imager for exoplanet transit timing

    Get PDF
    By the precise timing of the low amplitude (0.005 - 0.02 magnitude) transits of exoplanets around their parent star it should be possible to infer the presence of other planetary bodies in the system down to Earth-like masses. We describe the design and construction of RISE, a fast-readout frame transfer camera for the Liverpool Telescope designed to carry out this experiment. The results of our commissioning tests are described as well as the data reduction procedure necessary. We present light curves of two objects, showing that the desired timing and photometric accuracy can be obtained providing that autoguiding is used to keep the target on the same detector pixel for the entire (typically 4 hour) observing run.Comment: Published in PROC SPIE, vol 7014, 70416

    Characterizing precursors to stellar clusters with Herschel

    Get PDF
    Context. Despite their profound effect on the universe, the formation of massive stars and stellar clusters remains elusive. Recent advances in observing facilities and computing power have brought us closer to understanding this formation process. In the past decade, compelling evidence has emerged that suggests infrared dark clouds (IRDCs) may be precursors to stellar clusters. However, the usual method for identifying IRDCs is biased by the requirement that they are seen in absorption against background mid-IR emission, whereas dust continuum observations allow cold, dense pre-stellar-clusters to be identified anywhere. Aims: We aim to understand what dust temperatures and column densities characterize and distinguish IRDCs, to explore the population of dust continuum sources that are not IRDCs, and to roughly characterize the level of star formation activity in these dust continuum sources. Methods: We use Hi-GAL 70 to 500 mdatatoidentifydustcontinuumsourcesintheell=30degandell=59degHiGALsciencedemonstrationphase(SDP)fields,tocharacterizeandsubtracttheGalacticcirrusemission,andperformpixelbypixelmodifiedblackbodyfitsoncirrussubtractedHiGALsources.WeutilizearchivalSpitzerdatatoindicatethelevelofstarformingactivityineachpixel,frommidIRdarktomidIRbright.Results:WepresenttemperatureandcolumndensitymapsintheHiGALell=30degandell=59degSDPfields,aswellasarobustalgorithmforcirrussubtractionandsourceidentificationusingHiGALdata.WereportonthefractionofHiGALsourcepixelswhicharemidIRdark,midIRneutral,ormidIRbrightinbothfields.WefindsignificanttrendsincolumndensityandtemperaturebetweenmidIRdarkandmidIRbrightpixels;midIRdarkpixelsareabout10Kcolderandhaveafactorof2highercolumndensityonaveragethanmidIRbrightpixels.WefindthatHiGALdustcontinuumsourcesspanarangeofevolutionarystatesfrompretostarforming,andthatwarmersourcesareassociatedwithmorestarformationtracers.Additionally,thereisatrendofincreasingtemperaturewithtracertypefrommidIRdarkatthecoldest,tooutflow/masersourcesinthemiddle,andfinallyto8and24m data to identify dust continuum sources in the ell = 30deg and ell = 59deg Hi-GAL science demonstration phase (SDP) fields, to characterize and subtract the Galactic cirrus emission, and perform pixel-by-pixel modified blackbody fits on cirrus-subtracted Hi-GAL sources. We utilize archival Spitzer data to indicate the level of star-forming activity in each pixel, from mid-IR-dark to mid-IR-bright. Results: We present temperature and column density maps in the Hi-GAL ell = 30deg and ell = 59deg SDP fields, as well as a robust algorithm for cirrus subtraction and source identification using Hi-GAL data. We report on the fraction of Hi-GAL source pixels which are mid-IR-dark, mid-IR-neutral, or mid-IR-bright in both fields. We find significant trends in column density and temperature between mid-IR-dark and mid-IR-bright pixels; mid-IR-dark pixels are about 10 K colder and have a factor of 2 higher column density on average than mid-IR-bright pixels. We find that Hi-GAL dust continuum sources span a range of evolutionary states from pre- to star-forming, and that warmer sources are associated with more star formation tracers. Additionally, there is a trend of increasing temperature with tracer type from mid-IR-dark at the coldest, to outflow/maser sources in the middle, and finally to 8 and 24 m bright sources at the warmest. Finally, we identify five candidate IRDC-like sources on the far-side of the Galaxy. These are cold (20 K), high column density (N(H2_2) gt 1022^22 cm2^-2) clouds identified with Hi-GAL which, despite bright surrounding mid-IR emission, show little to no absorption at 8 $m. These are the first inner Galaxy far-side candidate IRDCs of which the authors are aware. Herschel in an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation by NASA.The FITS files discussed in the paper would be released publicly WITH the Hi-GAL data (on the Hi-GAL website) when the Hi-GAL data is released publicly.Peer reviewe

    Progress on reducing acrylamide levels in potato crisps in Europe, 2002 to 2019

    Get PDF
    European Snacks Association (ESA) data on acrylamide in potato crisps from 2002 to 2019 (99704 observations) were analysed. Acrylamide levels have plateaued since 2011, although the lowest mean so far was attained in 2018 at 353 ± 2.7 ng g-1: a 54% reduction since 2002. The 85th, 90th and 95th quantiles did show evidence of continued downward progress, the 90th quantile being lower than the 750 ng g-1 European Benchmark Level from 2017 to 2019. A smaller dataset from the European Food Safety Authority (2124 observations) for 2011-2018, was also analysed. The yearly means were higher than those of the ESA data, but showed a fall in average acrylamide from 715 ± 40.5 ng g-1 in 2015 to 505 ±28.5 ng g-1 in 2018, as well as steep falls in the 85th, 90th and 95th quantiles. Nevertheless, even the 85th quantile remained above the 750 ng g-1 Benchmark Level. The ESA data showed a reduction in the proportion of samples with acrylamide exceeding 750 ng g-1, from over 40 % in 2002 to 7.75 % in 2019. Seasonality was evident, with highest acrylamide levels from November to May. Crisp type had little effect except that thicker types had a higher proportion of samples containing >750 ng g-1 acrylamide. Analysis of the region of origin in Europe of the final product revealed improvements in the east and north. Geographical factors combined with seasonality continued to be problematic but was also an aspect in which progress was most evident. The findings show that improvements have been made in reducing the number of samples with very high levels of acrylamide, but do not suggest that mean acrylamide levels could be reduced substantially below where they have been since 2011, or that levels could be kept consistently below the current Benchmark Level

    Transient flow-driven distortion of a nematic liquid crystal in channel flow with dissipative weak planar anchoring

    Get PDF
    Motivated by the one-drop-filling (ODF) method for the industrial manufacturing of liquid crystal displays, we analyze the pressure-driven flow of a nematic in a channel with dissipative weak planar anchoring at the boundaries of the channel. We obtain quasisteady asymptotic solutions for the director angle and the velocity in the limit of small Leslie angle, in which case the key parameters are the Ericksen number and the anchoring strength parameter. In the limit of large Ericksen number, the solution for the director angle has narrow reorientational boundary layers and a narrow reorientational internal layer separated by two outer regions in which the director is aligned at the positive Leslie angle in the lower half of the channel and the negative Leslie angle in the upper half of the channel. On the other hand, in the limit of small Ericksen number, the solution for the director angle is dominated by splay elastic effects with viscous effects appearing at first order. As the Ericksen number varies, there is a continuous transition between these asymptotic behaviors, and in fact the two asymptotic solutions capture the behavior rather well for all values of the Ericksen number. The steady-state value of the director angle at the boundaries and the timescale of the evolution toward this steady-state value in the asymptotic limits of large and small Ericksen number are determined. In particular, using estimated parameter values for the ODF method, it is found that the boundary director rotation timescale is substantially shorter than the timescale of the ODF method, suggesting that there is sufficient time for significant transient flow-driven distortion of the nematic molecules at the substrates from their required orientation to occur

    Shockingly low water abundances in Herschel / PACS observations of low-mass protostars in Perseus

    Get PDF
    Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy' survey. Line emission from H2_\mathrm{2}O, CO, and OH is tested against shock models from the literature. Observed line ratios are remarkably similar and do not show variations with source physical parameters. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H2_\mathrm{2}O lines provide a particularly good diagnostic of pre-shock gas densities, nH105n_\mathrm{H}\sim10^{5} cm3^{-3}, in agreement with typical densities obtained from observations of the post-shock gas. The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km\,s1^{-1}. However, the observations consistently show one-to-two orders of magnitude lower H2_\mathrm{2}O-to-CO and H2_\mathrm{2}O-to-OH line ratios than predicted by the existing shock models. The overestimated model H2_\mathrm{2}O fluxes are most likely caused by an overabundance of H2_\mathrm{2}O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H2_\mathrm{2}O abundances and reconcile the models with observations. Detections of hot H2_\mathrm{2}O and strong OH lines support this scenario.Comment: 28 pages, 12 figures, accepted to Astronomy & Astrophysic
    corecore