1,083 research outputs found
The physics and modes of star cluster formation: simulations
We review progress in numerical simulations of star cluster formation. These
simulations involve the bottom-up assembly of clusters through hierarchical
mergers, which produces a fractal stellar distribution at young (~0.5 Myr)
ages. The resulting clusters are predicted to be mildly aspherical and highly
mass-segregated, except in the immediate aftermath of mergers. The upper
initial mass function within individual clusters is generally somewhat flatter
than for the aggregate population. Recent work has begun to clarify the factors
that control the mean stellar mass in a star-forming cloud and also the
efficiency of star formation. The former is sensitive to the thermal properties
of the gas while the latter depends both on the magnetic field and the initial
degree of gravitational boundedness of the natal cloud. Unmagnetized clouds
that are initially bound undergo rapid collapse, which is difficult to reverse
by ionization feedback or stellar winds.Comment: 21 pages, 10 figures. To appear as invited review article in a
special issue of the Phil. Trans. Royal Soc. A: Ch. 3 "Star clusters as
tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer
reviewed. LaTeX, requires rspublic.cls style fil
Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar
We present the first spectrum of a highly veiled, strongly accreting
protostar which shows photospheric absorption features and demonstrates the
stellar nature of its central core. We find the spectrum of the luminous (L_bol
= 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous
atomic and molecular absorption features, indicative of a K5 IV/V spectral type
and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and
stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun
pre-main-sequence star. However, 70% of its bolometric luminosity is due to
mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the
protostellar core. We determine that excess infrared emission produced by the
circumstellar accretion disk, the inner infalling envelope, and accretion
shocks at the surface of the stellar core of YLW 15 all contribute signifi-
cantly to its near-IR continuum veiling. Its projected rotation velocity v sin
i = 50 km / s is comparable to those of flat-spectrum protostars but
considerably higher than those of classical T Tauri stars in the rho Oph cloud.
The protostar may be magnetically coupled to its circumstellar disk at a radius
of 2 R_*. It is also plausible that this protostar can shed over half its
angular momentum and evolve into a more slowly rotating classical T Tauri star
by remaining coupled to its circumstellar disk (at increasing radius) as its
accretion rate drops by an order of magnitude during the rapid transition
between the Class I and Class II phases of evolution. The spectrum of WL 6 does
not show any photospheric absorption features, and we estimate that its
continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2
L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as
separate files). AASTeX LaTex macros version 5.0. To be published in The
Astronomical Journal (tentatively Oct 2002
On the fidelity of the core mass functions derived from dust column density data
Aims: We examine the recoverability and completeness limits of the dense core
mass functions (CMFs) derived for a molecular cloud using extinction data and a
core identification scheme based on two-dimensional thresholding.
Methods: We performed simulations where a population of artificial cores was
embedded into the variable background extinction field of the Pipe nebula. We
extracted the cores from the simulated extinction maps, constructed the CMFs,
and compared them to the input CMFs. The simulations were repeated using a
variety of extraction parameters and several core populations with differing
input mass functions and differing degrees of crowding.
Results: The fidelity of the observed CMF depends on the parameters selected
for the core extraction algorithm for our background. More importantly, it
depends on how crowded the core population is. We find that the observed CMF
recovers the true CMF reliably when the mean separation of cores is larger than
their mean diameter (f>1). If this condition holds, the derived CMF is accurate
and complete above M > 0.8-1.5 Msun, depending on the parameters used for the
core extraction. In the simulations, the best fidelity was achieved with the
detection threshold of 1 or 2 times the rms-noise of the extinction data, and
with the contour level spacings of 3 times the rms-noise. Choosing larger
threshold and wider level spacings increases the limiting mass. The simulations
show that when f>1.5, the masses of individual cores are recovered with a
typical uncertainty of 25-30 %. When f=1 the uncertainty is ~60 %. In very
crowded cases where f<1 the core identification algorithm is unable to recover
the masses of the cores adequately. For the cores of the Pipe nebula f~2.0 and
therefore the use of the method in that region is justified.Comment: 9 pages, 6 figures, accepted for publication in A&
Radiative Transfer in Prestellar Cores: A Monte Carlo Approach
We use our Monte Carlo radiative transfer code to study non-embedded
prestellar cores and cores that are embedded at the centre of a molecular
cloud. Our study indicates that the temperature inside embedded cores is lower
than in isolated non-embedded cores, and generally less than 12 K, even when
the cores are surrounded by an ambient cloud of small visual extinction (Av~5).
Our study shows that the best wavelength region to observe embedded cores is
between 400 and 500 microns, where the core is quite distinct from the
background. We also predict that very sensitive observations (~1-3 MJy/sr) at
170-200 microns can be used to estimate how deeply a core is embedded in its
parent molecular cloud. Finally, we present preliminary results of asymmetric
models of non-embedded cores.Comment: 8 pages, 15 figures, to appear in the conference proceedings of "Open
Issues in Local Star Formation and Early Stellar Evolution", held in Ouro
Preto (Brazil), April 5-10, 200
The Intrinsic Shapes of Molecular Cloud Fragments over a Range of Length Scales
We decipher intrinsic three-dimensional shape distributions of molecular
clouds, cloud cores, Bok globules, and condensations using recently compiled
catalogues of observed axis ratios for these objects mapped in carbon monoxide,
ammonia, through optical selection, or in continuum dust emission. We apply
statistical techniques to compare assumed intrinsic axis ratio distributions
with observed projected axis ratio distributions. Intrinsically triaxial shapes
produce projected distributions which agree with observations. Molecular clouds
mapped in CO are intrinsically triaxial but more nearly prolate than
oblate, while the smaller cloud cores, Bok globules, and condensations are also
intrinsically triaxial but more nearly oblate than prolate.Comment: 12 pages, 11 figures. Version with color figures can be found at
http://www.astro.uwo.ca/~cjones/ or http://www.astro.uwo.ca/~basu/. To appear
in ApJ, 10 April 2002, v. 569, no.
Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores
We present SWAS observations of water vapor in two cold star-less clouds, B68
and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01)
transition of o-H2O are reported for each source. Both molecular cores have
been previously examined by detailed observations that have characterized the
physical structure. Using these rather well defined physical properties and a
Monte-Carlo radiation transfer model we have removed one of the largest
uncertainties from the abundance calculation and set the lowest water abundance
limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8}
(relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low
abundances confirm the general lack of ortho-water vapor in cold (T < 20 K)
cores. Provided that the ortho/para ratio of water is not near zero, these
limits are well below theoretical predictions and appear to support the
suggestion that most of the water in dense low-mass cores is frozen onto the
surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter
The Earliest Phases Of High-Mass Star Formation, As Seen In Ngc 6334 By Herschel -Hobys
Aims. To constrain models of high-mass star formation, the Herschel-HOBYS key program aims at discovering massive dense cores (MDCs) able to host the high-mass analogs of low-mass prestellar cores, which have been searched for over the past decade. We here focus on NGC 6334, one of the best-studied HOBYS molecular cloud complexes
The "Mysterious" Origin of Brown Dwarfs
Hundreds of brown dwarfs (BDs) have been discovered in the last few years in
stellar clusters and among field stars. BDs are almost as numerous as hydrogen
burning stars and so a theory of star formation should also explain their
origin. The ``mystery'' of the origin of BDs is that their mass is two orders
of magnitude smaller than the average Jeans' mass in star--forming clouds, and
yet they are so common. In this work we investigate the possibility that
gravitationally unstable protostellar cores of BD mass are formed directly by
the process of turbulent fragmentation. Supersonic turbulence in molecular
clouds generates a complex density field with a very large density contrast. As
a result, a fraction of BD mass cores formed by the turbulent flow are dense
enough to be gravitationally unstable. We find that with density, temperature
and rms Mach number typical of cluster--forming regions, turbulent
fragmentation can account for the observed BD abundance.Comment: 11 pages, 3 figures, ApJ submitted Error in equation 1 has been
corrected. Improved figure
Search for starless clumps in the ATLASGAL survey
In this study, we present an unbiased sample of the earliest stages of
massive star formation across 20 square-degree of the sky. Within the region
10deg < l < 20deg and |b| < 1deg, we search the ATLASGAL survey at 870 micron
for dense gas condensations. These clumps are carefully examined for
indications of ongoing star formation using YSOs from the GLIMPSE source
catalog as well as sources in the 24 micron MIPSGAL images, to search for
starless clumps. We calculate the column densities as well as the kinematic
distances and masses for sources where the v_lsr is known from spectroscopic
observations. Within the given region, we identify 210 starless clumps with
peak column densities > 1 x 10e23 cm^(-2). In particular, we identify potential
starless clumps on the other side of the Galaxy. The sizes of the clumps range
between 0.1 pc and 3 pc with masses between a few tens of solar masses up to
several ten thousands of solar masses. Most of them may form massive stars, but
in the 20 square-degree we only find 14 regions massive enough to form stars
more massive than 20 solar masses and 3 regions with the potential to form
stars more massive than 40 40 solar masses. The slope of the high-mass tail of
the clump mass function for clumps on the near side of the Galaxy is 2.2 and,
therefore, Salpeter-like. We estimate the lifetime of the most massive starless
clumps to be 60000 yr. The sample offers a uniform selection of starless
clumps. In the large area surveyed, we only find a few potential precursors of
stars in the excess of 40 solar masses. It appears that the lifetime of these
clumps is somewhat shorter than their free-fall times, although both values
agree within the errors. In addition, these are ideal objects for detailed
studies and follow-up observations.Comment: 15 pages plus appendix, in total 44 pages, accepted for publication
in Astronomy & Astrophysics, full tables will be added soo
Molecular Tracers of Embedded Star Formation in Ophiuchus
In this paper we analyze nine SCUBA cores in Ophiuchus using the
second-lowest rotational transitions of four molecular species (12CO, 13CO,
C18O, and C17O) to search for clues to the evolutionary state and
star-formation activity within each core. Specifically, we look for evidence of
outflows, infall, and CO depletion. The line wings in the CO spectra are used
to detect outflows, spectral asymmetries in 13CO are used to determine infall
characteristics, and a comparison of the dust emission (from SCUBA
observations) and gas emission (from C18O) is used to determine the fractional
CO freeze-out.
Through comparison with Spitzer observations of protostellar sources in
Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole
indicators of the evolutionary state of each core. This study is an important
pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the
Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum
observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in
order to determine whether or not the cold dust clumps detected by SCUBA-2 are
protostellar or starless objects.
Our classification of the evolutionary state of the cores (based on molecular
line maps and SCUBA observations) is in agreement with the Spitzer designation
for six or seven of the nine SCUBA cores. However, several important caveats
exist in the interpretation of these results, many of which large mapping
surveys like the GBS may be able to overcome to provide a clearer picture of
activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in
the PAS
- …