89 research outputs found

    Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A) from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene

    Get PDF
    Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3), encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs) from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies

    The A736V TMPRSS6 Polymorphism Influences Hepatic Iron Overload in Nonalcoholic Fatty Liver Disease

    Get PDF
    AIMS: Hepatic iron accumulation due to altered trafficking is frequent in patients with nonalcoholic fatty liver disease (NAFLD), and is associated with more severe liver damage and hepatocellular carcinoma. The p.Ala736Val TMPRSS6 variant influences iron metabolism regulating the transcription of the hepatic hormone hepcidin, but its role in the pathogenesis of iron overload disorders is controversial. Aim of this study was to evaluate the whether the TMPRSS6 p.Ala736Val variant influences hepatic iron accumulation in a well-characterized series of Italian patients with histological NAFLD. METHODS: 216 patients with histological NAFLD. TMPRSS6 and HFE variants were assessed by allele specific PCR, liver histology by the NAFLD activity score and Perls' staining for iron. RESULTS: Homozygosity for the p.736Val allele previously linked to higher hepcidin did not influence transferrin saturation (TS), but was associated with lower hepatic iron stores (p\u200a=\u200a0.01), and ferritin levels (median 223 IQR 102-449 vs. 308 IQR 141-618 ng/ml; p\u200a=\u200a0.01). Homozygosity for TMPRSS6 p.736Val was nearly associated with lower ballooning (p\u200a=\u200a0.05), reflecting hepatocellular damage related to oxidative stress. The influence of TMPRSS6 on hepatic iron accumulation was more marked in patients negative for HFE genotypes predisposing to iron overload (p.Cys282Tyr + and p.His63Asp +/+; p\u200a=\u200a0.01), and the p.736Val variant was negatively associated with hepatic iron accumulation independently of age, gender, HFE genotype, and beta-thalassemia trait (OR 0.59, 0.39-0.88). CONCLUSIONS: The p.Ala736Val TMPRSS6 variant influences secondary hepatic iron accumulation in patients with NAFLD

    Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia

    Get PDF
    Background Type 1 hyperlipoproteinemia is a rare autosomal recessive disorder most often caused by mutations in the lipoprotein lipase (LPL) gene resulting in severe hypertriglyceridemia and pancreatitis. Objectives The aim of this study was to identify novel mutations in the LPL gene causing type 1 hyperlipoproteinemia and to understand the molecular mechanisms underlying the severe hypertriglyceridemia. Methods Three patients presenting classical features of type 1 hyperlipoproteinemia were recruited for DNA sequencing of the LPL gene. Pre-heparin and post-heparin plasma of patients were used for protein detection analysis and functional test. Furthermore, in\ua0vitro experiments were performed in HEK293\ua0cells. Protein synthesis and secretion were analyzed in lysate and medium fraction, respectively, whereas medium fraction was used for functional assay. Results We identified two novel mutations in the LPL gene causing type 1 hyperlipoproteinemia: a two base pair deletion (c.765_766delAG) resulting in a frameshift at position 256 of the protein (p.G256TfsX26) and a nucleotide substitution (c.1211\ua0T\ua0>\ua0G) resulting in a methionine to arginine substitution (p.M404\ua0R). LPL protein and activity were not detected in pre-heparin or post-heparin plasma of the patient with p.G256TfsX26 mutation or in the medium of HEK293\ua0cells over-expressing recombinant p.G256TfsX26 LPL. A relatively small amount of LPL p.M404\ua0R was detected in both pre-heparin and post-heparin plasma and in the medium of the cells, whereas no LPL activity was detected. Conclusions We conclude that these two novel mutations cause type 1 hyperlipoproteinemia by inducing a loss or reduction in LPL secretion accompanied by a loss of LPL enzymatic activity

    The i148m Pnpla3 polymorphism influences serum adiponectin in patients with fatty liver and healthy controls

    Get PDF
    BACKGROUND: Reduced adiponectin is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH), and the I148M Patatin-like phospholipase domain-containing 3 (PNPLA3) polymorphism predisposes to NAFLD and liver damage progression in NASH and chronic hepatitis C (CHC) by still undefined mechanisms, possibly involving regulation of adipose tissue function. Aim of this study was to evaluate whether the I148M PNPLA3 polymorphism influences serum adiponectin in liver diseases and healthy controls. METHODS: To this end, we considered 144 consecutive Italian patients with NAFLD, 261 with CHC, 35 severely obese subjects, and 257 healthy controls with very low probability of steatosis, all with complete clinical and genetic characterization, including adiponectin (ADIPOQ) genotype. PNPLA3 rs738409 (I148M) and ADIPOQ genotypes were evaluated by Taqman assays, serum adiponectin by ELISA. Adiponectin mRNA levels were evaluated by quantitative real-time PCR in the visceral adipose tissue (VAT) of 35 obese subjects undergoing bariatric surgery. RESULTS: Adiponectin levels were independently associated with the risk of NAFLD and with the histological severity of the disease. Adiponectin levels decreased with the number of 148\u2009M PNPLA3 alleles at risk of NASH both in patients with NAFLD (p\u2009=\u20090.03), and in healthy subjects (p\u2009=\u20090.04). At multivariate analysis, PNPLA3 148\u2009M alleles were associated with low adiponectin levels (<6\u2009mg/ml, median value) independently of NAFLD diagnosis, age, gender, BMI, and ADIPOQ genotype (OR 1.67, 95% c.i. 1.07-2.1 for each 148\u2009M allele). The p.148\u2009M PNPLA3 variant was associated with decreased adiponectin mRNA levels in the VAT of obese patients (p\u2009<\u20090.05) even in the absence of NASH. In contrast, in CHC, characterized by adiponectin resistance, low adiponectin was associated with male gender and steatosis, but not with PNPLA3 and ADIPOQ genotypes and viral features. CONCLUSIONS: The I148M PNPLA3 variant is associated with adiponectin levels in patients with NAFLD and in healthy subjects, but in the presence of adiponectin resistance not in CHC patients. The I148M PNPLA3 genotype may represent a genetic determinant of serum adiponectin levels. Modulation of serum adiponectin might be involved in mediating the susceptibility to steatosis, NASH, and hepatocellular carcinoma in carriers of the 148\u2009M PNPLA3 variant without CHC, with potential therapeutic implications

    Exploring digenic inheritance in arrhythmogenic cardiomyopathy

    Get PDF
    Background: Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder, characterized by the substitution of heart muscle with fibro-fatty tissue and severe ventricular arrhythmias, often leading to heart failure and sudden cardiac death. ACM is considered a monogenic disorder, but the low penetrance of mutations identified in patients suggests the involvement of additional genetic or environmental factors. Methods: We used whole exome sequencing to investigate digenic inheritance in two ACM families where previous diagnostic tests have revealed a PKP2 mutation in all affected and some healthy individuals. In family members with PKP2 mutations we determined all genes that harbor variants in affected but not in healthy carriers or vice versa. We computationally prioritized the most likely candidates, focusing on known ACM genes and genes related to PKP2 through protein interactions, functional relationships, or shared biological processes. Results: We identified four candidate genes in family 1, namely DAG1, DAB2IP, CTBP2 and TCF25, and eleven candidate genes in family 2. The most promising gene in the second family is TTN, a gene previously associated with ACM, in which the affected individual harbors two rare deleterious-predicted missense variants, one of which is located in the protein's only serine kinase domain. Conclusions: In this study we report genes that might act as digenic players in ACM pathogenesis, on the basis of co-segregation with PKP2 mutations. Validation in larger cohorts is still required to prove the utility of this model

    Helicity of the W Boson in Lepton+Jets ttbar Events

    Get PDF
    We examine properties of ttbar candidates events in lepton+jets final states to establish the helicities of the W bosons in t->W+b decays. Our analysis is based on a direct calculation of a probability that each event corresponds to a ttbar final state, as a function of the helicity of the W boson. We use the 125 events/pb sample of data collected by the DO experiment during Run I of the Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction of F_0=0.70 from the standard model

    Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV

    Get PDF
    Using the D0 detector, we have studied events produced in proton-antiproton collisions that contain large forward regions with very little energy deposition (``rapidity gaps'') and concurrent jet production at center-of-mass energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet events associated with such rapidity gaps are measured and compared to predictions from Monte Carlo models. For hard diffractive candidate events, we use the calorimeter to extract the fractional momentum loss of the scattered protons.Comment: 11 pages 4 figures. submitted to PR
    • 

    corecore