16 research outputs found

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models

    Get PDF
    The study was aimed at investigating how the method of splitting data into a training set and a test set influences the external predictivity of quantitative structure-activity and/or structure-property relationships (QSAR/QSPR) models. Six models of good quality were collected from the literature and then redeveloped and validated on the basis of five alternative splitting algorithms, namely: (i) a commonly used algorithm ('Z:1'), in which every zth (e.g. third) from the compounds sorted ascending (according to the response values, y) is selected into the test set; (ii-iv) three variations of the Kennard-Stone algorithm; and (v) the duplex algorithm. The external validation statistics reported for each model served as a basis for the final comparison. We demonstrated that the splitting techniques utilizing the values of molecular descriptors alone (X) or in combination with the model response (y) always lead to the development of the models yielding better external predictivity in comparison with the models designed with methodologies based on the y-values only. Moreover, we showed that the external validation coefficient (Q2EXT) is more sensitive to the splitting technique than the root mean square error of prediction (RMSEP). This difference becomes especially important when the test set is relatively small (between 5-10 compounds). In the case of the models trained/validated with a small number of compounds, it is strongly recommended that both statistics (Q2EXT and RMSEP) are taken into account for the external predictivity evaluation.JRC.I.6-Systems toxicolog

    A Framework for assessing in silico Toxicity Predictions: Case Studies with selected Pesticides

    Get PDF
    In the regulatory assessment of chemicals, the use of in silico prediction methods such as (quantitative) structure-activity relationship models ([Q]SARs), is increasingly required or encouraged, in order to increase the efficiency and effectiveness of the risk assessment process, and to minimise the reliance on animal testing. The main question for the assessor concerns the usefulness of the prediction approach, which can be broken down into the practical applicability of the method and the adequacy of the predictions. A framework for assessing and documenting (Q)SAR models and their predictions has been established at the European and international levels. Exactly how the framework is applied in practice will depend on the provisions of the specific legislation and the context in which the non-testing data are being used. This report describes the current framework for documenting (Q)SAR models and their predictions, and discuses how it might be built upon to provide more detailed guidance on the use of (Q)SAR predictions in regulatory decision making. The proposed framework is illustrated by using selected pesticide active compounds as examples.JRC.DG.I.6-Systems toxicolog

    The Applicability of Software Tools for Genotoxicity and Carcinogenicity Prediction: Case Studies relevant to the Assessment of Pesticides

    Get PDF
    This report presents research results obtained in the framework of a project on the Applicability of Quantitative Structure-Activity Relationship (QSAR) analysis in the evaluation of the toxicological relevance of metabolites and degradates of pesticide active substances. During this project, which was funded by the European Food Safety Authority (EFSA), the Joint Research Centre (JRC) performed several investigations to evaluate the comparative performance of selected software tools for genotoxicity and carcinogenicity prediction, and to develop a number of case studies to illustrate the opportunities and difficulties arising in the computational assessment of pesticides. This exercise also included an investigation of the chemical space of several pesticides datasets. The results indicate that different software tools have different advantages and disadvantages, depending on the specific requirements of the user / risk assessor. It is concluded that further work is needed to develop acceptance criteria for specific regulatory applications (e.g. evaluation of pesticide metabolites) and to develop batteries of models fulfilling such criteria.JRC.DG.I.6-Systems toxicolog

    The Use of Computational Methods in the Toxicological Assessment of Chemicals in Food: Current Status and Future Prospects

    Get PDF
    A wide range of chemicals are intentionally added to, or unintentially found in, food products, often in very small amounts. Depending on the situation, the experimental data needed to complete a dietary risk assessment, which is the scientific basis for protecting human health, may not be available or obtainable, for reasons of cost, time and animal welfare. For example, toxicity data are often lacking for the metabolites and degradation products of pesticide active ingredients. There is therefore an interest in the development and application of efficient and effective non-animal methods for assessing chemical toxicity, including Quantitative Structure-Activity Relationship (QSAR) models and related computational methods. This report gives an overview of how computational methods are currently used in the field of food safety by national regulatory bodies, international advisory organisations and the food industry. On the basis of an international survey, a comprehensive literature review and a detailed QSAR analysis, a range of recommendations are made with the long-term aim of promoting the judicious use of suitable QSAR methods. The current status of QSAR methods is reviewed not only for toxicological endpoints relevant to dietary risk assessment, but also for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their reaction products. By referring to the concept of the Threshold of Toxicological Concern (TTC), the risk assessment context in which QSAR methods can be expected to be used is also discussed. This Joint Research Centre (JRC) Reference Report provides a summary and update of the findings obtained in a study carried out by the JRC under the terms of a contract awarded by the European Food Safety Authority (EFSA).JRC.DG.I.6-Systems toxicolog

    Quantitative Structure - Skin permeability Relationships

    Get PDF
    This paper reviews in silico models currently available for the prediction of skin permeability with the main focus on the quantitative structure-permeability relationship (QSPR) models. A comprehensive analysis of the main achievements in the field in the last decade is provided. In addition, the mechanistic models are discussed and comparative studies that analyse different models are discussed

    EFSA's OpenFoodTox: An open source toxicological database on chemicals in food and feed and its future developments

    Get PDF
    Since its creation in 2002, the European Food Safety Authority (EFSA) has produced risk assessments for over 5000 substances in >2000 Scientific Opinions, Statements and Conclusions through the work of its Scientific Panels, Units and Scientific Committee. OpenFoodTox is an open source toxicological database, available both for download and data visualisation which provides data for all substances evaluated by EFSA including substance characterisation, links to EFSA's outputs, applicable legislations regulations, and a summary of hazard identification and hazard characterisation data for human health, animal health and ecological assessments. The database has been structured using OECD harmonised templates for reporting chemical test summaries (OHTs) to facilitate data sharing with stakeholders with an interest in chemical risk assessment, such as sister agencies, international scientific advisory bodies, and others. This manuscript provides a description of OpenFoodTox including data model, content and tools to download and search the database. Examples of applications of OpenFoodTox in chemical risk assessment are discussed including new quantitative structure–activity relationship (QSAR) models, integration into tools (OECD QSAR Toolbox and AMBIT-2.0), assessment of environmental footprints and testing of threshold of toxicological concern (TTC) values for food related compounds. Finally, future developments for OpenFoodTox 2.0 include the integration of new properties, such as physico-chemical properties, exposure data, toxicokinetic information; and the future integration within in silico modelling platforms such as QSAR models and physiologically-based kinetic models. Such structured in vivo, in vitro and in silico hazard data provide different lines of evidence which can be assembled, weighed and integrated using harmonised Weight of Evidence approaches to support the use of New Approach Methodologies (NAMs) in chemical risk assessment and the reduction of animal testing

    Update of the Cancer Potency Database (CPDB) to enable derivations of Thresholds Of Toxicological Concern (TTC) for cancer potency

    Get PDF
    The purpose of this study was to update the existing Cancer Potency Database (CPDB) in order to support the development of a dataset of compounds, with associated points of departure (PoDs), to enable a review and update of currently applied values for the Threshold of Toxicological Concern (TTC) for cancer endpoints. This update of the current CPDB, last reviewed in 2012, includes the addition of new data (44 compounds and 158 studies leading to additional 359 dose-response curves). Strict inclusion criteria were established and applied to select compounds and studies with relevant cancer potency data. PoDs were calculated from dose-response modeling, including the benchmark dose (BMD) and the lower 90% confidence limits (BMDL) at a specified benchmark response (BMR) of 10%. The updated full CPDB database resulted in a total of 421 chemicals which had dose-response data that could be used to calculate PoDs. This candidate dataset for cancer TTC is provided in a transparent and adaptable format for further analysis of TTC to derive cancer potency thresholds

    Computational Toxicology at the European Commission's Joint Research Centre

    No full text
    Importance of the field: The methods and tools of computational toxicology an essential and integrating pillar in the new paradigm of predictive toxicology which seeks to develop more efficient and effective means of assessing chemical toxicity, while also reducing animal testing. Areas covered in this review: The increasingly prominent role of computational toxicology in the implementation of European chemicals legislation is described, along with initiatives by the European Commission¿s Joint Research Centre to promote the acceptance and use of computational methods. Outstanding needs and scientific challenges are also outlined. What the reader will gain: an awareness of the current situation regarding the application of computational methods in regulatory toxicology. Take home message: In recent years, there has been impressive scientific and technological advances in computational toxicology. However, considerable progress is still needed to increase the acceptance of computational methods, and in particular to develop a deeper and common understanding of how to apply computational toxicology in regulatory decision making.JRC.I.5-Systems Toxicolog
    corecore