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ABSTRACT

In the regulatory assessment of chemicals, the use of in silico prediction methods such as (quantitative) 
structure-activity relationship models ([Q]SARs), is increasingly required or encouraged, in order to 
increase the efficiency and effectiveness of the risk assessment process, and to minimise the reliance 
on animal testing. The main question for the assessor concerns the usefulness of the prediction 
approach, which can be broken down into the practical applicability of the method and the adequacy of 
the predictions. A framework for assessing and documenting (Q)SAR models and their predictions has 
been established at the European and international levels. Exactly how the framework is applied in 
practice will depend on the provisions of the specific legislation and the context in which the non-
testing data are being used. This report describes the current framework for documenting (Q)SAR 
models and their predictions, and discuses how it might be built upon to provide more detailed 
guidance on the use of (Q)SAR predictions in regulatory decision making. The proposed framework is 
illustrated by using selected pesticide active compounds as examples.
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1. Introduction

In order to efficiently and effectively assess the risks of large numbers of existing chemicals and new 
chemical entities, there is an increasing emphasis in the regulatory setting on the use of so-called “non-
testing” methods, either as a supplement to, or as a substitute for, traditional testing methods. In 
particular, alternatives to animal methods are being developed to reduce the need for animal testing in 
pharmacology and toxicology. Non-testing methods are based on the premise that the properties 
(including physicochemical properties and biological activities) of a chemical depend on its intrinsic 
nature and can be directly predicted from its molecular structure or inferred from the properties of 
similar compounds whose activities are known.
Non-testing methods include a range of predictive approaches, including Structure-Activity 
Relationships (SARs), Quantitative Structure Activity Relationships (QSARs), chemical grouping and 
read-across, and computer-based tools based on the use of one or more of these approaches. Non-
testing methods also include models for predicting the absorption, distribution, metabolism and 
elimination (ADME) characteristics of chemicals in biological organisms (Mostrag-Szlichtyng & 
Worth, 2010), even though these models are not based entirely on the intrinsic properties of chemicals, 
as well their fate in the environment. 

The main question for the assessor when applying non-testing methods for regulatory purposes 
concerns the usefulness of the approach, which can be broken down into the practical applicability of 
the method and the adequacy of the predictions. Considerable progress has been made at the European 
Union (EU) and international levels to develop a harmonised framework for assessing and 
documenting non-testing methods and their predictions. Exactly how this framework is applied in 
practice will depend on the provisions of the specific legislation (e.g. chemicals, pesticides, biocides, 
cosmetics) and the context in which the non-testing data are being used (including, for example, 
whether a traditional testing method is being replaced, whether additional, supporting data are 
available, and the consequences of making an inaccurate prediction). The general framework leaves 
largely open the difficult question of how to determine the adequacy of predicted data, and there is a 
considerable need to develop detailed guidance on how the predictions generated by non-testing
methods can be translated into regulatory decisions. 
This report introduces the conceptual basis of SARs and QSARs, collectively referred to as (Q)SARs. 
The current international framework for (Q)SAR models and predictions is then described. The 
practical applicability of this framework is illustrated by focussing on a checklist of 10 key questions, 
with respect to some well known software tools and their predictions of genotoxicity of two case study 
compounds. The purpose of these case studies is to highlight some of the scientific issues that need to 
be considered, as well the difficulties encountered. This report is based partly on work carried out by 
the Joint Research Centre (JRC) in the context of a study funded by the European Food Safety 
Authority (EFSA). The full report of this study is publicly available from the EFSA website (JRC, 
2010).

1.1 Conceptual basis of (Q)SAR models
(Q)SARs are theoretical models that are designed to predict the physicochemical, biological (e.g. 
toxicological) and fate properties of molecules from knowledge of chemical structure.
More specifically, a SAR is a qualitative relationship between a molecular (sub)structure and the 
presence or absence of a given biological activity, or the capacity to modulate a biological activity 
imparted by another substructure. The term substructure refers to an atom, or group of adjacently 
connected atoms, in a molecule. A substructure associated with the presence of a biological activity is 
also called a structural alert. A SAR can also be based on the ensemble of steric and electronic features 
considered necessary to ensure the intermolecular interaction with a specific biological target 
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molecule, which results in the manifestation of a specific biological effect. In this case, the SAR is
sometimes called a 3D SAR or pharmacophore. 
A QSAR is a quantitative relationship (often a regression model) between a biological activity (which 
may be categorical or quantitative) and one or more molecular descriptors that describe chemical 
structure in numerical terms and which are used as predictors of the biological activity. A molecular 
descriptor is a structural or physicochemical property of a molecule, or part of a molecule. A 
comprehensive review of molecular descriptors has been published by Todeschini & Consonni (2009).

Guidance on the regulatory application of (Q)SARs was developed to support the implementation of 
the REACH legislation in Europe, and has been published by the European Chemicals Agency 
(ECHA, 2008).

In addition to the formalised approach of QSAR analysis, it is possible to estimate chemical properties 
and endpoints by using a less formalised approach, based on the grouping and comparison of 
chemicals. The grouping approach can be used, for example, to support the results of QSAR analysis 
or to generate estimated data (and fill data gaps) assuming that, in general, similar compounds will 
exhibit similar biological activity (ECHA, 2008).

1.2 The adequacy of (Q)SARs

The REACH guidance for applying (Q)SARs provides a flexible framework according to which it is 
possible to use data from (Q)SAR models instead of experimental data if each of four main conditions 
is fulfilled (ECHA, 2008): 

• the model used is shown to be scientifically valid;

• the model used is applicable to the chemical of interest;

• the prediction (result) is relevant for the regulatory purpose; and 

• appropriate documentation on the method and result is given. 
Thus, multiple, overlapping conditions must be fulfilled to use a (Q)SAR prediction instead of data 
generated by a standard experimental test, as illustrated in Figure 1. The extent to which these 
conditions can be relaxed for the indirect and supporting use of (Q)SAR data, remains to be 
established on the basis of experience. 
The following sections will explain the considerations necessary for demonstrating model validity, 
applicability and adequacy. The need to provide “appropriate documentation” is fulfilled by the 
provision of QSAR reporting formats for models and their predictions. The former type of 
documentation is the QSAR Model Reporting Format (QMRF) and the latter is the QSAR Prediction 
Reporting Format (QPRF). To accompany the more detailed guidance, ECHA has published a 
summary guide on how to report QSAR models. (ECHA, 2010).
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Figure 1 The overlapping considerations of validity, applicability and relevance needed to demonstrate 
(Q)SAR adequacy

1.3 Model validity
The first condition for using (Q)SARs is the demonstration of model validity. There is widespread 
agreement that models should be scientifically valid or validated if they are to be used in the regulatory 
assessment of chemicals. According to the OECD Guidance Document on the Validation and 
International Acceptance of New or Updated Test Methods for Hazard Assessment, the term validation 
is defined as follows (OECD, 2005):

“…the process by which the reliability and relevance of a particular approach, method, process or 
assessment is established for a defined purpose”

This wide-ranging definition is intended to cover all kinds of traditional and alternative testing 
methods. In the context of (Q)SARs, this definition is rather abstract and difficult to apply. However, 
in the case of (Q)SARs, a set of five validation principles has been established by the OECD (OECD, 
2007). The OECD principles for (Q)SAR validation state that in order:

“to facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated with 
the following information:

1. a defined endpoint;

2. an unambiguous algorithm;

3. a defined domain of applicability;

4. appropriate measures of goodness-of-fit, robustness and predictivity;

5. a mechanistic interpretation, if possible.”

The OECD validation principles identify the types of information that are considered useful for the 
assessment of (Q)SARs for regulatory purposes. They constitute the basis of a conceptual framework, 
but they do not in themselves provide criteria for the regulatory acceptance of (Q)SARs. Fixed criteria 
are difficult, if not impossible, to define, given the highly context-dependent and variable ways in 
which non-testing data may be used. The intent of each principle is explained in Table 1.
The assessment of (Q)SAR model validity should therefore be performed by reference to the OECD 
principles for the validation of (Q)SARs. The validation exercise itself may be carried out by any 
person or organisation. The guidance on QSAR validation published by the OECD (OECD, 2007) is 
also summarised in the REACH guidance on the use of (Q)SARs (ECHA, 2008).
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Based on a review of QSARs in the scientific literature, Dearden et al. (2009) identified as many as 21 
types of common “error” which the authors associate with improper model development, assessment 
and documentation.9 As can be seen in Table 2, some of these errors are related to the choice and 
treatment of the data that are included in the training and test sets (e.g. relevance, heterogeneity, spread 
in values, accuracy); other errors to the choice of descriptors (e.g. comprehensibility), and others to the 
statistical methodology (e.g. overfitting, suitable choice of statistics); and others to the overall 
transparency and transferability. This paper provides technical considerations that are useful for the 
model developer, some of which are also suitable for routine checking by the model end-user. 
As an example, a common technical error in the modelling of toxicological endpoints is that QSAR 
models should be based on molar units, rather than on weight or concentration units. This is because 
physical and biological effects depend on the number of molecules present, and not on how much they 
weigh. However, this is often overlooked by the model developer because the underlying data, 
generated from guideline studies, are generally expressed in concentration or weight units. However, it 
is a simple exercise to convert values derived from dose-response curves (typically median values) 
from mg/kg to molar units, and this often improves the models derived. If, however, the response is 
measured at a fixed weight dosage for all chemicals, then conversion is useless, because each chemical 
will have been tested at a different molar dose, making comparison impossible. This one example 
illustrates the detail that is ideally needed in a comprehensive assessment of QSAR models. In 
developing the QSAR reporting formats, the main challenge was to define a level of detail in reporting 
models and their predictions that represents a workable compromise between what is desirable 
scientifically and what is workable and sufficient to support the regulatory assessment of models.
Information on (Q)SAR model validity, including peer-reviewed documentation , is available the JRC 
QSAR Model Database (http://qsardb.jrc.it). This database is intended to be a repository of potentially 
useful information on models that are characterised according to the internationally accepted format of 
the QMRF. It is not intended to be an inventory of officially accepted or adopted (Q)SAR models, 
since in the EU there is no formal process for their validation and acceptance (Worth, 2010).

1.4 Model overfitting - causes, consequences and diagnostics
An important consideration when assessing the validity of statistically-based models concerns the 
problem of overfitting. This is covered by OECD Validation Principle 4. The goodness-of-fit of a 
QSAR model reflects: a) the ability of the model predictors to account for the variance of the response 
in the training set; and b) the statistical significance of the model. The optimal model should express a 
balance between the complexity and relevance of the applied predictors/methodology and the resulting 
benefits in terms of performance. According to the principle of parsimony (Occam’s Razor), the 
optimal model should be based on the minimum necessary information and nothing more. Otherwise, 
it can result in one of two extremes: either the model is over-fitted, i.e. too complex and simply 
modelling noise, or the model is under-fitted, i.e. too simplistic and lacking vital information 
(Hawkins, 2003, Gramatica, 2007). Moreover, if the model is not statistically significant, it should not 
be used for predictive purposes. These considerations do not apply to models that are entirely 
knowledge-based rather than statistically-based.
There are two main causes of overfitting, resulting in a redundant level of model complexity, which 
does not improve (and may even diminish) the model performance. The first main cause is the 
improper selection of independent variables by: a) including more predictors than are necessary to 
capture the variance of the response (Aptula et al., 2005); b) using predictors that are inter-correlated 
(collinear); c) using predictors that are irrelevant and correlated with the response “by chance”, 
without being meaningful and predictive (Topliss & Edwards, 1979). Another main cause of
overfitting is related to the choice of modelling technique that is: a) more complicated than necessary 
to find the relationships between the descriptors and the response; or b) not suitable to describe 
particular dependencies. 
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Overfitting is undesirable for a variety of reasons. Using superfluous and/or irrelevant predictors can 
result in the loss of valuable information, adding random variation to the predictions (i.e. prediction 
error) and incomplete or misleading interpretation of the modelled phenomenon. The use of collinear 
predictors means that the same information is being used more than once to fit the model and this leads 
to an overestimation of its importance. Overfitting usually results in unpredictable errors, which are 
related to the noise in the dataset (due to the selected variables and methods), rather the modelled 
property (Tetko et al., 2008). The problem of overfitting is more likely to occur, and harder for the 
non-specialist to diagnose, in the case of methods capable of handling large amounts of correlated 
information and noisy variables. Examples of such methods are Support Vector Machines (SVM) and 
Artificial Neural Networks (ANN). 

To assess the goodness-of-fit of a model, the predictions for chemicals in the training set are used. 
However, models that are overfitted typically show worse predictivity for independent data than their 
internal validation statistics imply. Thus, internal validation should ideally be followed by external 
validation. The main indication of an overfitted model is its high internal “predictivity” (error of 
estimation much lower than the experimental error), accompanied by a lower (or lack of) external 
predictivity. 

To avoid overfitting, it is necessary to apply certain statistical validation techniques providing fitness 
functions that allow verification of the appropriate form (relevance) of the model (in terms of the 
variables and methodology used) and which enable the optimal model complexity to be found. Clearly, 
statistical expertise is required to apply and interpret the results of such techniques.

The initial splitting of data into training and test sets is of vital importance, since it determines the data 
which will be used to fit the model. Ideally, both the training and test sets should cover the entire range 
of the considered chemical space, defined by the predictor values, on the one hand, and by the 
endpoint values, on the other (Daszykowski et al., 2002). The most popular algorithms used to design 
the optimal size and composition of training and test sets are: Kennard-Stone (Kennard & Stone, 
1969), Duplex (Snee, 1977), D-optimal distance (Cook & Nachtsheim, 1980), repeated test set 
technique (Boggia et al., 1997) and self-organising map (Kohonen, 1998). However, a practical 
problem is that high-quality data are not always sufficiently available to divide into independent 
training and test sets, which means that most if not all of the available data are used to train the model.

1.4.1 Regression models
In order to assess the predictive ability of a regression model in the absence of an external test set, a 
number of internal validation techniques can be used (Cramer et al., 1988). The most popular 
techniques are based on leave-one-out (LOO) and leave-many-out (LMO) cross-validation methods
(Osten, 1988), as well as bootstrap resampling (Wehrens et al., 2000). Although the LOO cross-
validation is probably the most widely used technique, it often provides an overly optimistic 
simulation of a model’s predictive ability, especially when large datasets are used. In such cases, more 
realistic (lower) estimates of predictivity can be obtained by LMO cross-validation, which introduces a 
larger perturbation in the studied dataset. Similarly, the fitness statistics provided by the bootstrapping 
method are indicative of the model’s predictivity. Models which are based on “chance correlation” can 
be identified by the response permutation test (Y-scrambling; Lindgren et al., 1996) or the QUIK rule 
(Todeschini et al., 1999). 
The statistical significance of a model can be estimated by its F-values for a given number of degrees 
of freedom. The probability of the model equation being significant increases with the F-value. A 
statistically significant model ensures that the highest possible predictivity is obtained with the 
minimal number of predictors (Occam’s razor) and that the predictors are orthogonal (uncorrelated). A 
model having low significance statistics may be underfitted, based on “chance correlations”, noisy 
predictors or intercorrelated predictors, and will probably show discrepancies between its goodness-of-
fit and its predictivity. In order to assess the statistical significance of each regression coefficient, a t-
test (for a given number of degrees of freedom) should be performed. This allows identification of
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those predictors that significantly contribute to the explanation of the response variable and those that
are meaningless. The main fitness functions performed for various types of models and possible ways 
of interpreting them are summarised in Table 3.

1.4.2 Classification models
The goodness-of-fit of a classification model can be assessed in terms of its Cooper statistics, namely: 
sensitivity, specificity, concordance (accuracy), positive/negative predictivity, as well as false
positive/false negative rates. For individual classification models, the relevant Cooper statistics should 
be significantly greater than a pre-defined threshold (typically 50%, but a lower percentage may be 
acceptable if the emphasis is on positive/negative predictivity rather than sensitivity/specificity). In 
order to compare the performances of a number of classification models, the Receiver Operating 
Characteristic (ROC) curve, plotting the true positive rate against the false positives rate, is often used.
In the ROC curve, a model in the top left-hand corner is ideal (fully predictive), whereas a model along 
the diagonal is producing predictions nor better than chance.
Methods for checking whether a model is overfitted can be automatically applied by available 
statistical software packages. Nevertheless, the user will need sufficient knowledge about the 
diagnostic rules and the underlying methods in order to interpret the statistical. Different statistical 
approaches may provide different statistics; for example, different values of the same statistics can 
result from varying the composition of the training and test sets. Thus, transparency is necessary to 
document the procedure of model development and validation process. However, exactly how much
transparency is needed for regulatory purposes is still a matter of debate.

Apart from the statistical approaches to assess whether the model is overfitted or not, which require 
statistical expertise to apply and interpret, some more simple and straightforward “rules of thumb” can 
be followed based on the information available to the assessor: 

1. to estimate the model's goodness-of-fit, internal predictivity and statistical significance, the 
following statistics should be provided: n, r2 (R2), q2 (Q2), R2

adj, s, F statistics including p-
values;

2. the number of chemicals (n) to predictors should be at least 5:1 (Topliss and Costello, 1972);
3. for transparent mechanistic interpretation of the model, the maximal number of predictors 

(except group contributions and electropological state indices) should not exceed 5-6 
(Dearden et al., 2009); 

4. the standard error of the estimate (s) should not be significantly less than the known 
experimental error for the predicted endpoint;

5. the difference between the R2(Y) and Q2(Y) values should not exceed 0.3.

1.5 Model applicability 
Assessment of model validity is a necessary but not sufficient step in assessing the adequacy of a 
(Q)SAR prediction. Assuming that the model of choice is considered valid, a second essential step is to 
demonstrate the applicability of the model to the chemical of interest. The evaluation of model 
applicability is related to the evaluation of the reliability of prediction for the chemical of interest, 
since a valid (Q)SAR is associated with at least one defined applicability domain in which the model 
makes estimations with a defined level of accuracy (reliability). When applied to chemicals within its 
applicability domain, the model is expected to give reliable results (or results with a defined level of
reliability). Conversely, if a model is applied to a chemical outside its applicability domain, it is likely 
that the estimated result will either be unreliable or of unknown reliability. 
The applicability domain of a model is a multi-faceted concept, and can be broken down into: a) a 
descriptor domain; b) a structural fragment domain; c) a mechanistic domain; and d) a metabolic 



10

domain. In other words, the reliability of a prediction is constrained by whether the chemical of 
interest has: a) descriptor values within predefined ranges; b) structural fragments that are “known” to 
the model; c) its predefined mode and/or mechanism of action; and d) the likelihood that it may 
undergo transformation or metabolism, and the characteristics of any products.
There is no unique measure of model reliability, and no criteria for (Q)SAR reliability have been 
established in regulatory guidance. Model reliability should be regarded as a relative concept, 
depending on the context in which the model is applied. In other words, a greater or lesser degree of 
reliability may be sufficient for a given regulatory application. This implies that the applicability 
domain can be defined to suit the regulatory context.
The assessment of whether a given model is applicable to a given chemical can be broken down into 
the following specific questions:

1. is the chemical of interest within the scope of the model, according to the defined 
applicability domain of the model?

2. is the defined applicability domain suitable for the regulatory purpose?

3. how well does the model predict chemicals that are similar to the chemical of interest?
4. is the model estimate reasonable, taking into account other information?

The importance of having an explicit definition of the model domain becomes apparent when 
addressing question 1. In practice, there is often limited information concerning the descriptor, 
structural fragment, mechanistic, and metabolic domains.
The second question arises because most currently available models were not tailor-made for current 
regulatory needs and inevitably incorporate biases which may or may not be useful, depending on the 
context of prediction. A model can be (deliberately or inadvertently) biased toward certain classes of 
chemicals), or toward a certain type of prediction (e.g. a model optimised to correctly identify 
positives at the expense of correctly identifying negatives). Such biases do not affect the validity of the 
model, but they do affect its applicability for specific purposes. Information on these biases can 
therefore help the user determine whether the model is suitable. 

The third question provides a simple way of checking whether a model is appropriate by checking its 
predictive capability for one or more analogues that are similar to the one of interest and for which 
measured values exist. This is effectively using a read-across argument to support the reliability of the 
(Q)SAR prediction. 

A more generic check, expressed by question 4, is whether the predicted value seems “reasonable”, 
based on any other information available. This is an appeal to an expert judgement, supported with 
argumentation.
The judicious application of these questions to assess the applicability of a (Q)SAR model is by no 
means straightforward, and needs specialised expertise. Software applications that generate (Q)SAR 
estimates vary in the extent and manner to which they incorporate and report applicability domain 
considerations.

1.6 Model adequacy
The preceding two sections explain that in order for a (Q)SAR result to be adequate for a given 
regulatory purpose, the estimate should be generated by a valid model, and the model should be 
applicable to the chemical of interest with the necessary level of reliability. Fulfilment of these two 
conditions is necessary but not sufficient for demonstrating adequacy. At present, there is no detailed 
and firm guidance on how to demonstrate adequacy, but some general considerations are offered in the 
REACH guidance (ECHA, 2008). This is partly a reflection of the fact that more experience is needed 
at the regulatory level to expand on existing guidance, but also that the concept of adequacy, by its 
very nature, means that only general considerations will be possible. In any case, to demonstrate the 
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adequacy of a QSAR estimate generated by a valid and applicable model some additional 
argumentation is required. 
One piece of argumentation is that the model endpoint should be relevant for the regulatory purpose. 
For some models, in which the model predicts directly the regulatory endpoint (e.g. an acute toxicity 
LD50 value), the relevance is self-evident. However, in the case of many QSAR models, and 
especially a new generation of QSAR models that are focusing on predicting lower-level mechanistic 
endpoints (Cronin et al., 2009), an additional extrapolation is needed to relate the modelled endpoint 
(e.g. nucleophilic reactivity towards DNA or proteins) to the endpoint of regulatory interest (e.g. 
mutagenicity or sensitisation). 
The relevance and reliability of a given prediction need to be assessed in relation to a particular 
regulatory purpose, taking into account the availability of other information in the context of a weight-
of-evidence assessment. In other words, the question is whether the totality of information is sufficient 
to reach a regulatory conclusion, and if not, what additional information (possibly including new test 
data) is needed to reduce the uncertainty and increase confidence in the conclusion. This should take 
account of the “severity” of the decision (the “principle of proportionality”) as well as the possible 
consequences of reaching a “wrong” conclusion (“principle of caution or conservativeness”). Thus, the 
amount and quality of information that is required depends on the uncertainty in the data, the severity 
of the regulatory decision, and the consequence of being wrong. It follows that the determination of 
adequacy is based not only on scientific argumentation, but also on a policy decision. For this reason, 
it does not make sense to develop absolute criteria for assessing adequacy that are acceptable in all 
regulatory decision-making contexts.
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2. Proposed framework for assessing in silico predictions
Although absolute criteria cannot be meaningfully formulated for assessing the adequacy of (Q)SAR 
predictions for regulatory purposes, it is possible to highlight a minimal set of important questions that 
can applied in a practical manner by the risk assessor. For illustrative purposes, a checklist of 10 
questions is proposed in Table 4.  Questions 1-6 are related to the model, whereas questions 7-10 are 
related to the model prediction. This set of questions is not intended to be definitive - individual 
questions could be skipped or additional questions could be added, depending on the needs of a 
particular regulatory framework and the context in which the predictions are being used.

2.1 Method for applying the framework
To illustrate the application of the checklist, the 10 questions have been applied to the predictions of 
genotoxicity for two case study chemicals, methyl parathion and sodium nitroguaiacolate, obtained 
with a range of popular software tools, including:

• a tool based on expert rules, Derek for Windows;

• tools based on statistical methodologies: CAESAR, Lazar, TOPKAT, HazardExpert, and the 
formerly named ToxBoxes (now called ACDToxSuite); 

• and a hybrid tool (Toxtree). 
These tools were selected for illustrative purposes. Many other software tools also make predictions of 
genotoxiicty, and there is a vast literature of published models, as reviewed elsewhere (Serafimova et 
al., 2010).

2.1.1 Derek for Windows 
Derek for Windows (DfW) is a SAR-based system is developed by Lhasa Ltd, a non-profit company 
and educational charity (https://www.lhasalimited.org/). DfW contains over 50 alerts covering a wide 
range of toxicological endpoints in humans, other mammals and bacteria. An alert consists of a 
toxicophore (a substructure known or thought to be responsible for the toxicity) and is associated with 
literature references, comments and examples. A key feature of DfW is the transparent reporting of the 
reasoning underlying each prediction.

All the rules in DfW are based either on hypotheses relating to mechanisms of action of a chemical 
class or on observed empirical relationships (Sanderson & Earnshaw, 1991). Information used in the 
development of rules includes published data and suggestions from toxicological experts in industry, 
regulatory bodies and academia. The toxicity predictions are the result of two processes. The program 
first checks whether any alerts in the knowledge base match toxicophores in the query structure. The 
reasoning engine then assesses the likelihood of a structure being toxic. There are nine levels of 
confidence: certain, probable, plausible, equivocal, doubted, improbably, impossible, open, and
contradicted. DfW can be integrated with Lhasa’s Meteor software, which makes predictions of fate, 
thereby providing predictions of toxicity for both parent compounds and their metabolites.
DfW predictions are knowledge-based, based on the application of alerts and reasoning rules. The final 
toxicity assessment is a result of a two-part process: (i) the program checks whether any alerts from the 
knowledge base appear in the query compounds, and (ii) the reasoning model is applied in order to 
determine the likelihood of the compound's toxicity (expressed as the level of likelihood). If no alerts 
from the knowledge base can be matched against query structure, the program displays a message 
"Nothing to report". 
Genotoxicity alerts in DfW include alerts for mutagenicity (in bacteria and mammals) and alerts for 
chromosome damage based on the in vitro chromosomal aberration assay and including effects that do 
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not involve direct DNA damage (inhibition of DNA synthesis/repair, spindle function disruption, 
reactive oxygen species generation, energy depletion, thiol reactivity, intercalation).
In order to make the results from DfW comparable with other results, we converted the output into 
three categories: active, equivocal and not active, as in the following table.  

Interpretation of Derek toxicity predictions 

Level of likelihood Interpretation of the results
Certain active
Probable active
Plausible active
Equivocal equivocal
Doubted not active
Improbable not active
Impossible not active
Open not active
Contradicted not active
Nothing to report not active

2.1.2 CAESAR 
CAESAR comprises a series of statistically-based models developed within EU-funded CAESAR 
project (http://www.caesar-project.eu). The models have been implemented into open-source software 
and made available for online use via the web. Predictions can be made for five endpoints: 
mutagenicity (Ames), carcinogenicity, developmental toxicity, skin sensitisation, and the 
bioconcentration factor.
The CAESAR prediction of mutagenicity is based on the SVM approach and the Kazius/Bursi 
database (http://www.cheminformatics.org/datasets/bursi). The SVM modelling is followed by an 
“expert facility” filter based on Benigni/Bossa rules, applied to the compounds presumed safe by 
SVM. The filter combines two sets of structural alerts with different distinguishing features: the former 
(the "sharp" one) has the aim to enhance the prediction accuracy attempting a precise identification of 
misclassified False Negatives (FN), the latter (the “suspicious” one) continues with the FN removal in 
such a way that this does not noticeably reduce the original prediction accuracy by generating too 
many False Positives (FP) as well. Compounds picked out by the first checkpoint are classified as 
“mutagenic” (i.e. active), and those picked out by the second are classified as “suspicious” (i.e. 
equivocal). Unaffected ones are finally classified as “non-mutagenic” (i.e. inactive).

2.1.3 ToxBoxes 
ToxBoxes (now called ACD/Tox Suite), marketed by ACD/Labs and Pharma Algorithms, provides 
predictions of various toxicity endpoints including human Ether-à-go-go Related Gene (hERG)
channel inhibition, genotoxicity, cytochrome P450 (CYP3A4) inhibition, Estrogen Receptor (ER)
binding affinity, irritation, rodent acute lethal toxicity (LD50), aquatic toxicity, and organ-specific 
health effects (http://www.acdlabs.com/products/admet/tox/). The predictions are associated with 
confidence intervals and probabilities, thereby providing a numerical expression of prediction 
reliability. The software incorporates the ability to identify and visualize specific structural 
toxicophores, giving insight as to which parts of the molecule are responsible for the toxic effect. It 
also identifies analogues from its training set, which can also increase confidence in the prediction. 
The algorithms and datasets are not disclosed. 
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The predictions of genotoxicity by ToxBoxes are based on the probability of query compounds to be 
genotoxic in Ames test. The training data used in the software originate from Chemical Carcinogenesis 
Research Information (CCRIS) and Genetic Toxicology Data Bank (GENE-TOX), containing the 
results of Ames genotoxicity assays for several strains of S. typhimurium (TA97, TA98, TA100, 
TA102, TA104, TA1535, TA1537, TA1538 and also E. coli strain WP2 uvrA), with or without 
metabolic activation. In establishing this training set, a compound was considered genotoxic if at least 
one of Ames results was positive; otherwise, the compound was considered non-genotoxic. In case of 
inconsistent results from different assays, the data were evaluated by experts and in some cases had 
been labelled as inconclusive. The final training set exceeded 8000 compounds with standardised 
Ames genotoxicity values. A neural network model was built using structural fragments as descriptors. 
Molecules were decomposed into atomic and chain-based fragments (chains of interconnected atoms). 
Fragments containing 2 to 5 atoms, present in at least 10 training set molecules were used to develop
the model. The model makes a prediction if the chemical structure is more than 75% covered by 
fragments in the training set. For each compound, the “probability of positive Ames test” and a so-
called “Ames test reliability index” are provided.
The method suggested by the vendor was adopted to convert the probability values into binomial ones 
(actives or inactives) according to the following rules: 

(i) if the “Probability of positive Ames test” is bigger than 0.7, then the compound is a
predicted mutagen (i.e. active); 

(ii) if the “Probability of positive Ames test” is smaller than 0.3, then the compound is a
predicted non-mutagen (i.e. inactive); 

(iii) if the “Probability of positive Ames test” is between 0.7 and 0.3, then the result is predicted 
as equivocal.

2.1.4 Lazar
Lazar is an open-source software programme that makes predictions of toxicological endpoints 
(currently, mutagenicity, human liver toxicity, rodent and hamster carcinogenicity, and Maximum 
Recommended Daily Dose) by analysing structural fragments in a training set (Helma, 2006; Maunz & 
Helma, 2008). It is based on the use of statistical algorithms for classification (k-nearest neighbours 
and kernel models) and regression (multi-linear regression and kernel models). In contrast to 
traditional k-Nearest Neighbour (k-NN) techniques, Lazar treats chemical similarities not in absolute 
values, but as toxicity dependent values, thereby capturing only those fragments that are relevant for 
the toxic endpoint under investigation. The Lazar algorithm works by building an instance-based local 
model that excludes the chemical being predicted from its local training set. Lazar performs automatic 
applicability domain estimation and provides a confidence index for each prediction, and is usable 
without expert knowledge. Lazar runs under Linux and a web-based prototype is also freely accessible 
(http://lazar.in-silico.de/).

The mutagenicity predictions by Lazar are based on a k-NN algorithm and two datasets: Kazius/Bursi 
(http://www.cheminformatics.org/datasets/bursi/) and the so-called “Benchmark Data Set for In Silico 
Prediction of Ames Mutagenicity” (http://ml.cs.tu-berlin.de/toxbenchmark/). Each prediction is 
associated with a prediction confidence (between 0 and 1), which gives information about the 
presence/absence of studied compounds within the applicability domain (AD) of the model. The 
developer proposed a confidence value higher than 0.025 as a reasonable hard cut-off for compounds 
within the AD. The accuracy of prediction decreases with the confidence value.
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2.1.5 TOPKAT
TOPKAT is a QSAR-based system, developed by Accelrys Inc. (http://accelrys.com/), makes 
predictions of a range of toxicological endpoints, including mutagenicity, developmental toxicity, 
rodent carcinogenicity, rat chronic LOAEL Lowest Observed Adverse Effect Level (LOAEL), rat 
Maximum Tolerated Dose (MTD) and rat oral LD50. The QSARs are developed by regression analysis 
for continuous endpoints and by discriminant analysis for categorical endpoints. TOPKAT models are 
derived by using a range of two-dimensional molecular, electronic and spatial descriptors. TOPKAT 
estimates the confidence in the prediction by applying the patented Optimal Predictive Space (OPS) 
validation method. The OPS is TOPKAT’s formulation of the model applicability domain - a unique 
multivariate descriptor space in which a given model is considered to be applicable. Any prediction 
generated for a query structure outside of the OPS space is considered unreliable. 

The TOPKAT mutagenicity model was developed from compounds assayed according to the US EPA 
GeneTox protocol (i.e. tested against five strains of Salmonella typhimurium using the Histidine 
Reversion Assay). A chemical is labelled a mutagen if a positive response is observed against one or 
more strains. A chemical is considered a non-mutagen if a negative response is observed in all of these 
five bacterial strains. Therefore, when a query structure is assessed by TOPKAT to be a non-mutagen 
(computed probability of mutagenicity between 0.0 and 0.3), it indicates that there is a high probability 
of the query chemical producing a negative response in the Histidine Reversion Assay against all of 
the five bacterial strains. It is important to note that a non-mutagen assessment by TOPKAT does not 
mean that the query chemical will be a non-mutagen in other mutagenicity tests, such as the 
micronucleus and Chinese Hamster Ovary tests. As suggested by the vendor, probability values can be 
converted into binomial ones (actives or inactives) according to the following rules: 

(i) if computed probability of mutagenicity greater than 0.7, then the compound is considered 
to be a mutagen (i.e. active);

(ii) if computed probability of mutagenicity smaller than 0.3, then the compound is considered 
to be a non-mutagen (i.e. inactive); 

(iii) if computed probability of mutagenicity between 0.3 and 0.7, then the prediction is 
equivocal.

2.1.6 HazardExpert
HazardExpert is a module of the Pallas software developed by CompuDrug (http://compudrug.com/). 
It predicts the toxicity of organic compounds based on toxic fragments, and it also calculates 
bioavailability parameters (logP and pKa). It is a rule-based system with an open knowledge base, 
allowing the user to expand or modify the data on which the toxicity estimation relies. It covers the 
following endpoints relevant to toxicity assessment: carcinogenicity, mutagenicity, teratogenicity, 
membrane irritation, immunotoxicity and neurotoxicity

The results of mutagenicity predictions by HazardExpert (Pallas v 3.3.2.4) are provided as relative 
percentage toxicity values. On the basis of the ranges of the results the authors proposed the 
classification of chemicals as “highly probable”, “probable”, “uncertain” and “not probable” to express 
mutagenic activity. In order to compare the HazardExpert predictions with the results of other software 
tools we treated “highly probable” and “probable” chemicals as active, “uncertain” chemicals as 
equivocal, and “not probable” ones as not active, as in the following table.  
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Interpretation of HazardExpert mutagenicity predictions 

The range of relative 
percentage toxicity [%]

Toxic Class Classification Interpretation 
of the results

100-60 1 Highly probable active
59-48 2A Probable active
47-36 2B Probable active
35-3 3 Uncertain equivocal
2-0 4 Not probable not active

2.1.7 Toxtree 
Toxtree is a flexible and user-friendly open-source application that places chemicals into categories 
and predicts various kinds of toxic effect by applying decision tree approaches. Toxtree can be 
downloaded from the JRC (http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE) and 
from Sourceforge (https://sourceforge.net/projects/toxtree/). Toxtree has been developed by the JRC in 
collaboration with various consultants, in particular Ideaconsult Ltd (Sofia, Bulgaria). A key feature of 
Toxtree is the transparent reporting of the reasoning underlying each prediction.
In this study, Toxtree v 1.60 was used. The mutagenicity predictions generated by Toxtree v. 1.60 are 
based on a decision tree implementing the Benigni/Bossa rules (Benigni et al., 2008) and rules for the 
in vivo micronucleus assay (Benigni et al, 2010). In addition, Toxtree applies the following QSAR 
models to query chemicals belonging to the classes of aromatic amines or alpha,beta-unsaturated 
aldehydes: (i) QSAR6 - mutagenic activity of aromatic amines in the Salmonella typhimurium TA100 
strain (Ames test); (ii) QSAR8 - carcinogenic activity of the aromatic amines in rodents (summary 
activity from rats and mice); (iii) QSAR 13 - mutagenic activity of alpha,beta-unsaturated aldehydes in 
the Salmonella typhimurium TA100 strain (Ames test). There are certain exceptions in the application 
of these QSARs, namely QSAR6 and QSAR8 in Toxtree v 1.60 apply to aromatic amines with the 
exclusion of aromatic amines having a sulphonic group on the same ring, and QSAR13 applies to 
alpha,beta-unsaturated aldehydes excluding cyclic alpha,beta-unsaturated aldehydes.

The structural rules in Toxtree are based largely on expert knowledge rather than statistically derived 
from training sets. However, the Benigni-Bossa rulebase includes some QSARs in addition to the 
structure-based rules: QSAR6 (Ames mutagenicity of aromatic amines) has 111 chemicals in its 
training set, QSAR8 (rodent carcinogenicity of aromatic amines) has 64 training set chemicals, and 
QSAR13 (Ames mutagenicity of alpha,beta-unsaturated aldehydes) has 20. 

2.2 Results obtained in the application of the framework
The results are given in Tables 5-11. Many of the questions are straightforward to answer, provided 
that the background documentation is available (QMRF, software manual and/or research 
publications). However, a few noteworthy points are elaborated in the following paragraphs:
The predicted endpoint is not always defined in detail; for example, sometimes a generic prediction of 
genotoxic potential is made but the underlying mechanistic effect may not be clearly identified (e.g. 
Ames mutagenicity, chromosome aberration). In the case of expert systems, the predictions are likely 
to be based on heterogeneous datasets of expert conclusions based on data from multiple test methods: 
the conclusions for genotoxic potential are likely to vary between assessors and over time, especially 
when the criteria for assessing the raw data have changed or were not clear in the first place. In the 
case of statistical models, this is a source of variability in the training set, which will inevitably affect 
the reliability of prediction.
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The question of model overfitting is not applicable to all types of models, especially knowledge-based 
models which encode human knowledge and statistical models that employ instance-based (nearest 
neighbour) learning algorithms. However, in general this consideration is applicable to statistically 
based models.
Comparing the prediction for the chemical of interest with predictions made for similar chemicals 
helps to assign confidence to the prediction, even when information on the statistical characteristics or 
the mechanistic basis of the model are missing. Some software tools (e.g. CAESAR, ToxBoxes) 
provide information on analogues. In such cases, it is recommended to consider the analogues 
provided by the software since these are likely to reflect the applicability domain of the model. 
However, additional and/or different analogues might also be considered. Other software tools (e.g. 
Toxtree) do not provide any information on analogues, so in these cases, the user needs to use other 
resources to find analogues. It is useful to know whether the selected analogues are in the training set 
of the model. This does not mean that they are not appropriate choices. On the contrary, if the model 
training set contains analogues of the chemical of interest, this increases confidence that the model is 
applicable since it covers the same chemical space. 
At present, there is no firm guidance on how to select an appropriate set of analogues - it is left largely 
to expert judgement. However, a few rules-of-thumb can be proposed: 

a) at least two analogues should be selected, including both known positives and negatives;

b) in general, 2-5 analogues should be sufficient for the evaluation; 
c) the experimental data for the analogues selected should be reliable and appropriate (e.g. same 

effect/endpoint) for the comparison; 

Computer-based search tools can be used to find analogues. Freely available tools include PubChem
(http://pubchem.ncbi.nlm.nih.gov/), ChemSpider (http://www.chemspider.com), AMBIT
(http://ambit.sourceforge.net/intro.html) and AIM (http://www.epa.gov/oppt/sf/tools/aim.htm). These 
tools do not always provide links to relevant and reliable experimental data. Freely downloadable tools 
such as the OECD QSAR Toolbox (http://www.qsartoolbox.org/) and Toxmatch
(http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXMATCH) can also be used (provided that 
a suitable dataset is already included or imported in the software). While these tools can assist the user 
in finding analogues, it is still necessary to judge whether the analogues are appropriate (or which 
analogues are most appropriate). Worked examples on how to use AMBIT and Toxmatch are given in 
Jeliazkova et al. (2010).

2.3 Use of analogue data in the assessment of predictions
An illustration of the use of analogue data is provided by predictions for methyl parathion and sodium 
nitroguaiacolate. Methyl parathion is a well-predicted chemical, in the sense that all software tools 
correctly predict it to be a mutagen (or indeterminate in the case of ToxBoxes). Conversely, sodium 
nitroguaiacolate is a poorly-predicted chemical, in the sense that all software tools incorrectly predict it 
to be a mutagen (or indeterminate in the case of ToxBoxes). In other words, methyl parathion is 
usually a true positive in mutagenicity prediction, whereas sodium nitroguaiacolate is usually a false 
positive.

The main question considered here is whether a judicious choice of analogues and their associated 
mutagenicity data would lead an assessor to trust the prediction for the true positive, but be doubtful of 
the prediction for the false positive. A selection of analogues for methyl parathion and sodium 
nitroguaiacolate is given in Tables 12 and 13, respectively. These analogues were chosen merely to 
illustrate the process, and are not necessarily the most appropriate analogues for the assessment of the 
two pesticides.
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For methyl parathion, four analogues were identified (Table 12), including a non-mutagen 
(fenitrothion) and three mutagens (fenitrooxon, hydroxymethylfenitrothion 4-aminofenitrothion). 
For nitroguaiacolate, five analogues were identified (Table 13), including two mutagens (o-
nitroanisole, p-nitroanisole) and three non-mutagens (m-nitroanisole, 3-methyl-4-nitrophenol, m-
nitrophenetole).

2.3.1 Derek for Windows predictions 
In the case of methyl parathion, DfW generates correct predictions for the three mutagenic analogues, 
but incorrectly predicts the non-mutagenic analogue to be a mutagen. Thus, the predicted mutagenicity 
of methyl parathion might be considered reliable on the basis of weight-of-evidence (3 out of 4 
correct), and this would lead to the right conclusion. In the case of nitroguaiacolate, the predictions for 
the two mutagenic analogues were correct whereas the predictions for two of the three non-mutagens 
were incorrect (unlike Toxtree, Derek correctly predicts the non-mutagenicity of 3-methyl-4-
nitrophenol). On the basis of marginal weight-of-evidence (3 out of 5 correct), the predicted 
mutagenicity of nitroguaiacolate might be considered reliable, but this would lead to the wrong 
conclusion. 

2.3.2 CAESAR predictions
In the case of methyl parathion, CAESAR generates correct predictions for the three mutagens, and 
also correctly identifies the non-mutagen. Thus, the predicted mutagenicity of methyl parathion would 
probably be considered reliable (all four predictions correct). In the case of nitroguaiacolate, the 
predictions for the two mutagens were correct but the predictions for the three non-mutagens were 
incorrect (including 1-ethoxy-3-nitrobenzene which is in the training set). Thus the prediction for 
nitroguaiacolate would probably be considered unreliable on the basis of weight-of-evidence (3 out of 
5 incorrect) and the fact the model does not correctly predict a known non-mutagen in its training set. 
In other words, this interpretation of CAESAR predictions would lead to the right conclusions for both 
chemicals.
To illustrate the use of analogue data in assessing the reliability of prediction, the argumentation 
provided above is based entirely on the weight-of-evidence of reliable predictions. This led to mixed 
results – sometimes the correct conclusion was drawn, and sometimes the incorrect one, but overall the 
conclusions were the right ones.

2.3.3 ToxBoxes predictions 
The application of ToxBoxes is interesting since it appears to perform very well on the basis of a 
global statistical analysis - positive and negative predictivities of 93% (Worth et al., 2010). However, 
the apparently high predictivity of the model could be due to its large training set, which contains an 
unknown overlap with any test set. When ToxBoxes is applied to methyl parathion and 
nitroguaiacolate, it gives indeterminate predictions, which means that further information would be 
sought. The generation of indeterminate predictions is not necessarily a weakness in a model. On the 
contrary, it could be seen as a strong point, since it would avoid reliance on an incorrect prediction.

2.3.4 Lazar predictions 
Methyl parathion is in the Lazar training set, so in this case, the assessment based on experimental data 
would be used. In the case of nitroguaiacolate, the predictions for the three non-mutagens were 
incorrect, whereas the predictions the two mutagens were correct. Again, the prediction for 
nitroguaiacolate might be doubted purely on the basis of weight-of-evidence. 
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2.3.5 TOPKAT predictions 
In the case of methyl parathion, TOPKAT generates correct predictions for two of the three mutagenic 
analogues, but generates a false positive prediction for the non-mutagen. On this basis, the predicted 
mutagenicity of methyl parathion would probably be considered unreliable (2 out of 4 predictions 
correct), even though this would be the wrong conclusion. In the case of nitroguaiacolate, one of the 
two mutagens was correctly identified, and two of the three non-mutagens were correctly identified. 
Thus the prediction for nitroguiacolate might be considered reliable on the basis of weight-of-evidence 
(3 out of 5 correct) although this would lead to the wrong conclusion. In other words, this 
interpretation of TOPKAT predictions would lead to the wrong conclusions for both pesticides.

2.3.6 HazardExpert predictions 
In the case of methyl parathion, HazardExpert generates correct predictions for the three mutagen 
analogues, but incorrectly predicts the non-mutagen analogue to be a mutagen. Thus, the predicted 
mutagenicity of methyl parathion might be considered reliable on the basis of weight-of-evidence (3 
out of 4 correct). In the case of nitroguaiacolate, the predictions of the two mutagenic analogues were 
correct but the predictions for the three non-mutagenic analogues were incorrect. Thus, the prediction 
for nitroguaiacolate might be considered unreliable on the basis of weight-of-evidence (3 out of 5 
incorrect). This use of HazardExpert would therefore lead to the right conclusions for the methyl 
parathion and nitroguaiacolate.

2.3.7 Toxtree predictions
In the case of methyl parathion, comparison of the known and predicted mutagenicities reveals that 
Toxtree makes the correct predictions for the three mutagens, but incorrectly predicts the non-mutagen 
to be a mutagen. On the basis of a weight-of-evidence (3 out of 4 predictions correct), this might be 
considered sufficient supporting evidence to rely on the mutagenicity prediction for methyl parathion. 
The false positive prediction for fenitrothion, as opposed to fenitrooxon for example, might be related 
to the fact that the latter is the phosphoryl derivative (bearing the P=O functionality) of the former 
(bearing the P=S functionality). It is known that phosphoryl derivatives are more toxic than the
corresponding thiophosphoryl compounds because they bind more strongly to (and act as more potent 
inhibitors of) certain enzymes, such as acetyl cholinesterase. However, the Toxtree rulebase does not 
capture this difference in chemistry.
In the case of nitroguaiacolate, the Toxtree predictions for the three non-mutagens were incorrect, 
whereas the predictions the two mutagens were correct. Thus, in this case, the prediction for 
nitroguaiacolate might be doubted purely on the basis of weight-of-evidence (3 out of 5 predictions 
incorrect), and this would be the right conclusion.
Overall, comparison of the Toxtree predictions with the data for the above-mentioned analogues 
indicates that Toxtree tends to overpredict mutagenicity, which is consistent with the global statistics -
a positive predictivity of 73% and a negative predictivity of 82% (Worth et al., 2010).  This means that 
in general greater confidence should be assigned to a negative prediction than a positive prediction. In 
terms of the underlying (Benigni-Bossa) rulebase, this indicates that the structural alerts act as a 
coarse-grain filter that tend to overpredict because they are unable to capture subtle differences in 
molecular substructures and/or properties.

2.3.8 Comments on the assessment of (Q)SAR predictions
In practice, the argumentation would be supplemented with additional information. Available 
information on the underlying toxicological mechanisms of action could also be considered in the 
assessment. For example, chemicals that are structural analogues but are known to act by a different 
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mechanism of action may not be suitable choices, since in these cases the relationship between 
chemical structure and toxicity might not be valid. Unfortunately, such detailed information is rarely 
available. Furthermore, if the raw experimental data are available, these could be analysed in more 
depth. In this example, the conclusions of the assessor (mutagenic or non-mutagenic) are adopted 
without question, but it is possible that a more in-depth analysis might result in differences of opinion 
based on the raw data. Clearly, this level of analysis requires toxicological expertise and is more time-
consuming. 
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3. Summary and Conclusioms

In this report, the current regulatory framework for documenting and assessing the validity of (Q)SAR 
models, and the adequacy of (Q)SAR predictions, is described, and some of the scientific issues 
encountered when applying the framework are illustrated via case studies on the genotoxicity 
prediction of selected pesticides. Two examples are given that illustrate that these issues are not trivial: 
a) the interpretation of different diagnostics of model fit and predictivity, which requires a reasonable 
level of statistical expertise; and b) the selection of suitable analogues to fill a data gap by read-across 
or to substantiate a QSAR prediction, which requires a expertise in chemistry and biology (toxicology)
and access to a range of computational tools and databases.
The framework developed for REACH should be sufficiently flexible to be applied in the risk
assessment all types of chemicals and products, irrespective of the legislation under which they are 
regulated (industrial chemicals, biocides, PPP etc). However, more detailed guidance is needed on how 
to evaluate models and interpret their predictions in specific regulatory contexts (e.g. establishing TTC 
values for low level pesticide metabolites).

The QSAR model reporting formats (QMRF and QPRF) were developed on the basis of consensus 
with the main stakeholders (industry and authorities). They capture a level of resolution that is a 
compromise between scientific rigour and practicality. However, it is not always clear how much 
detail should be included under the different headings, and what kind of information is pertinent for 
models developed by different methodological approaches - in addition to traditional QSAR modelling 
based on (multiple) linear regression, there is an increasing use of “novel” model-building methods 
such as Support Vector Machines (e.g. Ferrari & Gini, 2010), artificial neural networks, instance-based 
learning (e.g. Helma, 2006, Raevsky et al., 2010) and consensus modelling (e.g. Hewitt et al., 2007). If 
models based on such methods are to gain acceptance, they need to be understandable to the assessor, 
and described with a sufficient level of transparency to form the basis for regulatory decision making. 
Furthermore, and more generally, in the regulatory assessment of chemicals, there should be greater 
emphasis on the development of models that are suitable for specific regulatory purposes, rather than 
trying to understand whether existing models (developed for other reasons) might be useful. 

It is noteworthy that the current reporting formats focus on the result of the modelling process  in the 
case of the QMRF (i.e. the model validation characteristics) and its application to a chemical of 
interest in the case of the QPRF (i.e. the characteristics of the prediction), rather than on the modelling 
and prediction process itself. It has been argued that the acceptability of (Q)SAR predictions could be 
improved through the development of principles and standards for Good Computer Modelling Practice 
(GCMP), analogous to the principles of Good Laboratory Practice (Judson, 2010).

The usefulness of a model, and in particular the adequacy of a model prediction, can only be 
considered in the context of the specific application, including the regulatory purpose, in which the 
prediction is being used (e.g. in a weight-of-evidence assessment with experimental data) and the 
consequence of being wrong. In the context of pesticide risk assessment, it is expected that QSAR 
analysis will be applied in the context of a Threshold of Toxicological Concern (TTC) decision 
scheme (CRD, 2010). The TTC is a generic human exposure level for chemicals below which there is 
low probability of risk to human health, assuming lifetime exposure. The principle of TTC is built on 
the premise that a safe level of exposure can be identified for chemicals present at low concentrations 
in the diet, even for those with unknown toxicity, on the basis of their chemical structure (Barlow, 
2005).

In other words, QSARs are not considered here as standalone methods to directly fill data gaps in 
hazard assessment. Instead, they are being used to identify particular health concerns that may warrant 
specific thresholds of toxicological concern. In the TTC scheme by Kroes et al. (2004), and in the 
subsequent modifications by Munro et al. (2008) and Felter et al. (2009), there are three Cramer 
classes (I - low, II- moderate, and III-high) for different levels of non-cancer life-time risk, 
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corresponding to threshold doses of 1800, 540 and 90 µg/day/person, respectively. In the case of 
chemicals containing a structural alert for potential genotoxicity, a lower TTC of 0.15 µg/day is 
applied. These schemes refer to structural alerts, although the prediction of potential genotoxicity by a 
QSAR is presumably equivalent. However, it is unclear what is meant by an alert or QSAR for 
potential genotoxicity – should this be any genotoxic effect (e.g. Ames mutagenicity) or should it be 
limited to (in vivo) effects that are strong enough to warrant regulatory classification? Another open 
question is where structural alerts and QSARs for carcinogenicity fit in such TTC schemes. 
Presumably, such models would also be used to trigger a TTC of 0.15 µg/day, especially since most 
models for potential carcinogenicity are effectively modelling DNA reactivity (like models for 
potential genotoxicity). However, some models (e.g. Toxtree Benigni-Bossa) make predictions of non-
genotoxic carcinogenicity. Non-genotoxic carcinogens which also have the potential to bioaccumulate 
are typically excluded from TTC schemes. Furthermore, high potency carcinogens (e.g. aflatoxin-like, 
azoxy and N-nitroso compounds) are also excluded, not as a matter of principle, but because there has 
been insufficient analysis of their potency distributions on the basis of existing TTC databases. 
The crucial question in the application of QSAR is whether any model, or combination of models, is 
“good enough” for the regulatory purpose (in this case the identification of potential genotoxins). This
cannot be answered in the absence of clearly defined performance criteria, and these should be set by 
the risk assessor and risk manager. For the purpose of pesticide risk assessment in the context of a 
TTC scheme, the most important criterion is expected to be minimisation of the false negative rate. A 
global statistical analysis has shown that this can indeed be minimised by combining the use of two or 
more models. In the case of Ames mutagenicity prediction, the generation of false negatives was found 
to range from 7-34% (Worth et al., 2010).
At present, there is also little guidance on how to supplement (Q)SAR and read-across predictions with 
information on biokinetics and mechanisms of action, in order to develop weight-of-evidence based 
arguments for the replacement of (animal) testing. It is noticeable that there are no internationally 
adopted reporting formats specifically for metabolic simulation tools or Physiologically Based 
Biokinetic (PBBK) models, although in the latter case, good modelling practices are under 
development (Loizou et al., 2008). Therefore, further efforts are needed to develop strategies for 
integrating different kinds of experimental and non-testing information and guidance is needed on how 
to report this in a transparent and consistent manner.
In conclusion, there is still a considerable need to gain and share experience in the practical application 
of in silico prediction tools, with a view to improving the scientific robustness, transparency and 
consistency of chemical risk assessments in which data gaps are filled by computational modelling. 
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Table 1 Explanation of the OECD (Q)SAR validation principles

A (Q)SAR model should be … Explanation

1) associated with a defined endpoint. Aims to ensure transparency in the endpoint being 
predicted by a given model, since a given endpoint 
could be determined by different experimental 
protocols and under different experimental 
conditions. The endpoint refers to any 
physicochemical property, biological effect (human 
health or ecological) environmental fate parameter 
that can be measured and therefore modelled.

2) expressed in the form of an unambiguous 
algorithm.

Aims to ensure transparency in the description of 
the model algorithm.

3) associated with a defined domain of 
applicability

Recognises that (Q)SARs are reductionist models 
which are inevitably associated with limitations in 
terms of the types of chemical structures, 
physicochemical properties and mechanisms of 
action for which the models can generate reliable 
predictions. The principle expresses the need to 
justify that a given model is being used within the 
boundary of its limitations when making a given 
prediction. 

4) appropriate measures of goodness-of–fit, 
robustness and predictivity.

Expresses the need to provide two types of 
information: a) the internal performance of a model 
(as represented by goodness-of-fit and robustness), 
determined by using a training set; and b) the 
predictivity of a model, determined by using an 
appropriate test set. 

5) associated with a mechanistic interpretation, 
wherever possible.

Aims to ensure that there is an assessment of the 
mechanistic associations between the descriptors 
used in a model and the endpoint being predicted, 
and that any association is documented. Where a 
mechanistic interpretation is possible, it can add 
strength to the confidence in the model already 
established on the basis of Principles 1-4. The 
wording of this principle, while seemingly 
redundant in its use of “where possible” emphasises 
that is not always possible to provide a mechanistic 
interpretation of a given (Q)SAR.
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Table 2. Common errors in the development of QSARs (after Dearden et al., 2008)

No Type of error Related OECD principle(s)

1 Failure to take account of data heterogeneity 1
2 Use of inappropriate endpoint data 1
3 Use of collinear descriptors 2, 4 and 5
4 Use of incomprehensible descriptors 2 and 5
5 Error in descriptor values 2
6 Poor transferability of model 2
7 Inadequate/undefined applicability domain 3
8 Unacknowledged omission of data points 3
9 Use of inadequate data 3
10 Replication of compounds in dataset 3
11 Too narrow a range of endpoint values 3
12 Over-fitting of data 4
13 Use of excessive numbers of descriptors 4
14 Lack of/inadequate statistics 4
15 Incorrect calculation 4
16 Lack of descriptor auto-scaling 4
17 Misuse/misinterpretation of statistics 4
18 No consideration of distribution of residuals 4
19 Inadequate training/test set selection 4
20 Inadequate validation 4
21 Lack of mechanistic interpretation 5



29

Table 3. Goodness-of-fit parameters for regression models

Statistic Definition Interpretation
R2

(Multiple 
determination 
coefficient)

The variance of the 
response that is 
explained by the 
regression model.

* R2=0 – the lack of linear relationship between the response and 
predictors variables 

* R2= 1 – the perfect linear fit 

* R2>0.5 – the variance explained by the model is higher than the 
unexplained variance.

The value of R2 increases with additional predictors, even if they do not 
contribute to the explained variance in the response.

R2
adj

(Adjusted 
multiple 
determination 
coefficient)

The variance of 
model’s response 
that is explained by 
the regression for 
respective degrees 
of freedom.

The value of R2
adj decreases if a predictor is added to the equation but 

does not contribute to the explanation of the variance.

s

(Standard 
error of 
estimate)

The dispersion of 
the observed values 
about the 
regression line.

The smaller the value of s, the higher the reliability of prediction.

Standard error of estimate smaller than the experimental error of the 
biological data is indicative of an overfitted model.

Q2(Y)

(Cross-
validation 
coefficient)

Explained variance 
in prediction.

Indicates the model with the highest predictive ability. Q2(Y) does not 
increase after a certain degree of model complexity and indicates the 
zone with a balance between predictive power and reasonable fit. 

The difference between R2(Y) and Q2(Y) should not exceed 0.3. A larger 
difference indicates an overfitted model, the presence of irrelevant 
predictors or outliers in the data.

F-value The ratio between 
explained and 
unexplained model 
variance for a given 
number of degrees 
of freedom.

t-test The ratio between 
estimated 
regression 
coefficient and its 
standard deviation 
for a given number 
of degrees of  
freedom.

The regression equation/coefficients are statistically significant if 
calculated F-value/t-value is greater than a tabulated value for the chosen 
level of significance (typically 95%) and the corresponding degrees of 
freedom of F/t (p). 

Higher F-/t-values of a regression equation/coefficient correspond to 
greater statistical significance. Significance of the equation at the 95% 
level means that there is 5 % probability that the dependence found is 
obtained due to chance correlations between the variables. Significance 
of a coefficient at the 95% level means that there is a 5 % probability 
that the coefficient of a given variable is not significantly different from 
zero.
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Table 4. Checklist of questions to help establish the adequacy of a (Q)SAR prediction

No Question Interpretation 
1 Is the predicted endpoint clearly defined? If the endpoint is not clearly defined, the use of 

the prediction will be open to different 
interpretations, and thus of questionable value.

2 If the predicted endpoint is clearly defined (“yes” 
to Q1), does it represent a direct information 
requirement under the legislation of interest, or is 
it related to one of the information requirements? 

If the predicted endpoint corresponds directly 
with an information requirement, it may be 
possible to use the prediction instead of 
experimental data. Alternatively, if the predicted 
endpoint is indirectly related to an information 
requirement, it may be useful as supporting 
information.

3 If the model is statistically based (as opposed to 
knowledge-based), is the model training set fully 
available? 

If the model training set of a statistically-based 
model is not fully available (e.g. because the 
data are proprietary), it will be impossible for 
another practitioner to independently reproduce 
the model, which may reduce confidence in the 
model estimates. However, this may not be an 
issue if the model is coded into a software tool. 
This does not apply to knowledge-based 
models, which are based on human knowledge 
and do not have a clearly identified training set.

4 Is the method used to develop the model 
documented or referenced (e.g. in a scientific 
paper or QMRF)

If the details of model development are not 
documented, it will be impossible for another 
practitioner to independently develop and 
confirm the model, which may reduce 
confidence in the model estimates. Even if the 
method is documented, it will require a QSAR 
specialist to determine whether the 
documentation is sufficiently detailed to 
reproduce the model.

5 Is information available (in terms of statistical 
properties) concerning the performance of the 
model, including its goodness-of-fit, predictivity, 
robustness and error of prediction (uncertainty)?

The statistical properties of a model can provide 
evidence of its usefulness in a given context 
(e.g. need to minimise false negatives) and can 
also be used to assess whether the model has 
been overfitted (see question 7).

6 If the model is statistically based (as opposed to 
knowledge-based), does examination of the 
available statistics indicate that the model may 
have been overfitted?

The overfitting of statistically based models is 
undesirable because it can result in 
unpredictable errors. This consideration does 
not apply to knowledge-based models.
Overfitted statistical models typically show 
worse predictivity (outside their training sets) 
than their internal validation statistics imply. 
Several simple diagnostics exist, for example: 
a) the model estimation error (uncertainty of 
prediction) should not be significantly less than 
the known experimental error.
b) the ratio of datapoints (chemicals) to 
variables (descriptors) should be at least 5:1.
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No Question Interpretation 
7 Does the model training set contain the chemical 

of interest?
If the model training set contains the chemical 
of interest, then a prediction is not needed 
because some experimental data is available for 
direct use. 

8 Does the model make reliable predictions for 
analogues of the chemical structure of interest?

The generation of reliable predictions for 
analogues of the chemical of interest increases 
confidence in the prediction. In the case of a 
software tool, it should be indicated whether the 
software automatically identifies analogues and 
their associated data within the model training 
set. In the case of a literature model, it should be 
considered whether suitable analogues can be 
identified in the training set (if available).

9 Is the model prediction substantiated with 
argumentation based on the applicability domain 
of the model?

Confidence in a prediction is increased if 
information is available concerning the 
applicability domain of the model, and thus 
whether the model is applicable to the chemical 
of interest. The applicability domain can include 
physicochemical and structural space, as well as 
mechanistic and metabolic considerations.

10 Can the model prediction be easily reproduced? Not all model predictions can be easily 
reproduced, depending on the complexity and 
transparency of the model development process, 
and the availability of a user-friendly software 
tool implementing the model.
If the model is a simple SAR (structural alert) it 
should be possible to apply it by visual 
inspection. However, some differences of expert 
interpretation may arise.
If the model is a QSAR in the form of a 
transparent mathematical formula, it will be 
possible to apply it in a spreadsheet (e.g. Excel). 
If the model is implemented in the form of a 
freely or commercially available software tool, 
it is possible for different users to verify the 
same result (even if the model development 
process is not transparent), thereby increasing 
confidence in the prediction. 
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Table 5. Application of the checklist of questions to Derek for Windows

No Question (Q) and answer (A)

Q1 Is the predicted endpoint clearly defined?
A1 Yes. Derek provides predictions for mutagenicity, genotoxicity, chromosome damage and 

carcinogenicity (among other endpoints). The user can select the species and the endpoint of 
interest.
Derek v.11 contains 87 alerts for mutagenicity, 4 for genotoxicity, 74 for chromosome damage and 
56 for carcinogenicity.  

Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 
requirement under the legislation of interest, or is it related to one of the information requirements? 

A2 Yes, genotoxicity test data are required under most types of chemicals legislation (e.g. industrial 
chemicals, pesticides, biocides)  

Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 
available? 

A3 Not applicable (knowledge-based predictions). Derek rules are not built from the automated 
analysis of training sets. The alerts are created by experts who compare the toxicity of compounds 
from various different sources (proprietary, public domain and freely available) and knowledge of 
the mechanism of action where known. The software gives additional information in the alert 
description (comments, references, examples).

Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 
QMRF)

A4 Yes. A QMRF for the genotoxicity module is available in the JRC QSAR model database. There 
are also numerous papers which describe the development and use of Derek for different endpoints. 
The documentation which is supplementary to the software is very readable. Users receive support 
from the support centre of Lhasa Ltd.  The original publication is: Sanderson M & Earnshaw CG 
(1991).

Q5 Is information available (in terms of statistical properties) concerning the performance of the 
model, including its goodness-of-fit, predictivity, robustness and error of prediction (uncertainty)?

A5 Not applicable.
Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 

available statistics indicate that the model may have been overfitted?
A6 Not applicable.
Q7 Does the model training set contain the chemical of interest?
A7 Not applicable.
Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 The software does not identify a set of most similar analogues, but the case of most alerts, 

examples with experimental data are provided. 
Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 

model?
A9 There is no defined applicability domain but all predictions are well supported with explanations, 

references, and examples. If boundary conditions exist for an alert, these are clearly noted.
Q10 Can the model prediction be easily reproduced? 
A10 Yes, the software is commercially available and is easy to use.
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Table 6. Application of the checklist of questions to CAESAR

No Question (Q) and answer (A)

Q1 Is the predicted endpoint clearly defined?
A1 Yes, the endpoint is Ames (S. Typhimurium) mutagenicity
Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 

requirement under the legislation of interest, or is it related to one of the information 
requirements? 

A2 Yes, genotoxicity test data are required under most types of chemicals legislation (e.g. industrial 
chemicals, pesticides, biocides)  

Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 
available? 

A3 Yes, the training and test set will be soon available from the JRC QSAR model database
Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 

QMRF)
A4 Yes, a QMRF is in preparation, based on the following publications:

Ferrari T, Gini G & Benfenati E (2009). Support vector machines in the prediction of 
mutagenicity of chemical compounds. Proc NAFIPS 2009, June 14-17, Cincinnati, USA, p 1-6.
Ferrari T & Gini G (2010). Developing a new computational intelligence approach to predict the 
mutagenicity of chemical compounds. Computational Intelligence, in press.
Ferrari T & Gini G (2010). A new multistep model to predict mutagenicity from statistic analysis 
and relevant structural alerts. Central Chemistry 4, Suppl 1, S2.

Q5 Is information available (in terms of statistical properties) concerning the performance of the 
model, including its goodness-of-fit, predictivity, robustness and error of prediction 
(uncertainty)?

A5 Yes. Information on the accuracy (82.1%), sensitivity (90.6%) and specificity (71.4%) are 
provided in the QMRF.

Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 
available statistics indicate that the model may have been overfitted?

A6 The model is statistically based but should not be overfitted because the ratio of chemicals (3380) 
to descriptors (42) is 80.5.

Q7 Does the model training set contain the chemical of interest?
A7 The model training set includes some pesticides including parathion-methyl but not sodium 

nitroguaiacolate.
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Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 Yes, the Caesar software gives the chance to examine, for each compound submitted, the six 

most similar compounds found in the model training set. For these compounds the experimental 
value for the selected endpoint is shown, together with the prediction made by the model. The 
similarity measure employed by the Caesar software takes into account functional group 
similarity, constitutional similarity, ring similarity and fingerprint similarity.
For parathion methyl (correctly predicted by the software), the similar structures obtained are: 
parathion methyl (input structure contained in the training set), aminofenitrothion, 1-ethenoxy-4-
nitro-benzene, fenitrooxon, o-nitroanisole, N-hydroxy-N-(4-nitrophenyl)acetamide. All of them 
are predicted correctly by the software. For nitroguaiacolate (wrongly predicted by the software) 
the similar structures obtained are: o-nitroanisole, 1-ethoxy-3-nitro-benzene, 2,5-dinitrophenol, 
p-nitrosoanisole, 2-methoxy-1,3,5-trinitro-benzene, 1-ethenoxy-4-nitro-benzene. All of them are 
predicted correctly by the software.

Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 
model?

A9 Yes, Caesar addresses the applicability domain in several ways, namely by: a) checking whether 
the compound of interest falls in the descriptors space – if the compound is out of domain, this is 
noted in the output; b) providing a similarity score (1=identity) for the structure-based 
comparison with analogues;  c) visual representation of the most similar compounds; d) by 
revealing the known and predicted the known and predicted toxicities for the analogues, thereby 
indicating the prediction error. Thus Caesar provides an assessment based on both the input 
(descriptor) space and the output (toxicological endpoint) space.

Q10 Can the model prediction be easily reproduced? 
A10 Yes, the software is accessible in the form of a freely accessible web platform 

(http://www.caesar-project.eu) and is easy to use, even for non-specialists.
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Table 7. Application of the checklist of questions to ToxBoxes

No Question (Q) and answer (A)

Q1 Is the predicted endpoint clearly defined?
A1 Two models are available: a fragment-based model predicts Ames test results, whereas the 

genotoxicity hazards module is a knowledge-based expert system containing 27 known 
"genotoxicophore" fragments collected from literature. 

Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 
requirement under the legislation of interest, or is it related to one of the information requirements? 

A2 Yes, genotoxicity test data are required under most types of chemicals legislation (e.g. industrial 
chemicals, pesticides, biocides)  

Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 
available? 

A3 The Ames model training set is available through the software. The data consist of Ames test 
results obtained with various S. Typhimurium and E. Coli bacteria strains.

Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 
QMRF)

A4 No, not adequately. The software manual gives some general information about the model, but not 
a detailed description of model development. No research papers are cited.

Q5 Is information available (in terms of statistical properties) concerning the performance of the 
model, including its goodness-of-fit, predictivity, robustness and error of prediction (uncertainty)?

A5 No, information not available.
Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 

available statistics indicate that the model may have been overfitted?
A6 The model is statistically based but no information relating to overfitting could be found.
Q7 Does the model training set contain the chemical of interest?
A7 The training set includes parathion-methyl, but not sodium nitroguaiacolate.
Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 Yes, the ToxBoxes software provides a list of the five most similar structures from its training set. 

Some general information on the similarity measure is provided – it is calculated using Tanimoto 
and fingerprint Max2 similarity.
For methyl parathion, the five most similar structures identified are: parathion-methyl (the input 
structure), fenitrothion, parathion, hydroxymethyl-fenitrothion and fenitrooxon. The second 
compound (a non-mutagen) and the third (with an inconclusive Ames result) are predicted as 
indeterminate (probability of positive Ames test between 0.3 and 0.7), whereas the fourth and fifth 
(the known mutagens) are predicted correctly. 
For nitroguaiacolate five similar structures are identified, including one false positive (FP), three 
true positives (TP) and one true negative (TN): m-nitroanisole (FP), o-nitroanisole (TP), p-
nitroanisole (TP), 2,5-dimethoxy-4-nitroazobenzene (TP), and 3-methyl-4-nitrophenol (TN) 

Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 
model?

A9 Yes, the software calculates a Reliability Index for every prediction, which takes account of the 
applicability domain.

Q10 Can the model prediction be easily reproduced? 
A10 Yes, the software is very easy to use, even for non-specialists.
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Table 8. Application of the checklist of questions to Lazar

No Question (Q) and answer (A)
Q1 Is the predicted endpoint clearly defined?
A1 Yes. Mutagenicity (Ames test).  
Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 

requirement under the legislation of interest (e.g. PPP directive), or is it related to one of the 
information requirements? 

A2 Yes, genotoxicity test data are required under the PPP.  
Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 

available? 
A3 Yes. Lazar contains two models for Ames mutagenicity based on different training sets. They are 

both publicly available: the Kazius/Bursi dataset and Toxbenchmark dataset. 
Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 

QMRF)
A4 Yes, in: Helma, C. (2006). Lazy structure-activity relationships (lazar) for the prediction of 

rodent carcinogenicity and Salmonella mutagenicity. Molecular Diversity 10, 147-158.
Q5 Is information available (in terms of statistical properties) concerning the performance of the 

model, including its goodness-of-fit, predictivity, robustness and error of prediction 
(uncertainty)?

A5 Yes. Leave-one-out (LOO) and external validation tests indicate that Salmonella mutagenicity 
can be predicted with 85% accuracy for compounds within its applicability domain. 

Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 
available statistics indicate that the model may have been overfitted?

A6 This is not applicable for a model such as Lazar, which is based on an instance-based learning 
approach in which the prediction is generated from the nearest neighbours but the chemical of 
interest is excluded from the learning algorithm (and is therefore never in the training set).

Q7 Does the model training set contain the chemical of interest?
A7 Parathion-methyl is present in both the Kazius/Bursi dataset and Toxbenchmark dataset. 

However, the learning algorithm always excludes the chemical of interest (in case data are 
available). Nitroguaiacoloate is not present in either training set. 

Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 The model output can be inspected to identify the nearest neighbours, which may be considered 

as analogues. However, the relevance of such analogues needs to be checked.
Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 

model?
A9 Yes.
Q10 Can the model prediction be easily reproduced? 
A10 Yes, the software is freely accessible online and is easy to use.
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Table 9. Application of the checklist of questions to TOPKAT

No Question (Q) and answer (A)
Q1 Is the predicted endpoint clearly defined?
A1 Yes. Mutagenicity (Ames test).  
Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 

requirement under the legislation of interest (e.g. PPP directive), or is it related to one of the 
information requirements? 

A2 Yes, genotoxicity test data are required under the PPP.  
Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 

available? 
A3 The model is statistically based but the training set is not available.
Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 

QMRF)
A4 No. Topkat`s QSAR (QSTR) models are linear equations, which have not been described in 

detail. 
The variables in the equations are mentioned: the calculated values of electronic attributes, shape 
and symmetry indices, and transport-related descriptors such as molecular weight and VlogP. 
The electronic attributes are expressed in terms of the electrotopological state (E-State) values of 
specially designed 1-atom and 2-atom fragments of non-hydrogen atoms in different 
hybridization states. While the model equation is not reported, the individual contributions of all 
the descriptors used by the TOPKAT model to calculate the total contribution of the query 
structure are reported.

Q5 Is information available (in terms of statistical properties) concerning the performance of the 
model, including its goodness-of-fit, predictivity, robustness and error of prediction 
(uncertainty)?

A5 No.
Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 

available statistics indicate that the model may have been overfitted?
A6 Insufficient information to judge.
Q7 Does the model training set contain the chemical of interest?
A7 Yes. The chosen chemicals of interest are: 

1. parathion-methyl – computed probability of mutagenicity = 0.989 (true positive mutagen) 
2. nitroguiacolate (anion) – computed probability of mutagenicity = 0.767 (true positive 
mutagen) 
TOPKAT gives a warning if a query molecule contains a substructure which was not considered 
during the model development process. TOPKAT performs this by comparing all 1- and 2-atom 
fragments in the query structure with the list of fragments from the training set of the model. 
Should the query structure contain an uncovered fragment; i.e., a fragment that is in the query 
structure but not in the training set, it will caution you as to the acceptability of the assessment. 
These validation criteria were satisfied for the two chosen chemicals.
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Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 TOPKAT performs similarity searching of the model’s database for the query compound, i.e., 

similarity in descriptor space (type of descriptors and their values), not chemical structure space.
For each analogue of the query structure, the Ames Mutagenicity Prediction module v.3.1 was 
applied, which returned the following results: a) the actual experimental result;  b) the TOPKAT 
prediction; c) whether the compound was in the training set; d) the similarity distance from the 
query on a scale of 0.0 - 1.0. The smaller the distance, the greater the similarity. With this 
information, one can determine whether the query structure lies in an information-rich region of 
the model data space, and f similar compounds are accurately and/or correctly predicted by the 
model.
A TOPKAT analogue search for the chosen chemicals returned: 
1. 58 analogues of parathion-methyl, the majority of which were included in the training set and 
were correctly predicted.
2. 58 analogues of nitroguiacolate, all of which were included in the training set and were 
correctly predicted.

Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 
model?

A9 Yes. TOPKAT estimates the confidence in the prediction by applying the patented Optimal 
Predictive Space (OPS) validation method. The OPS is TOPKAT’s formulation of the model 
applicability domain - a unique multivariate descriptor space in which a given model is 
considered applicable. Any prediction generated for a query structure outside of the OPS space is 
considered unreliable.

Q10 Can the model prediction be easily reproduced? 
A10 The software is commercially available and easy to use. However, the algorithm is not 

sufficiently transparent to be reprogrammed into another software platform.
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Table 10. Application of the checklist of questions to HazardExpert

No Question (Q) and answer (A)
Q1 Is the predicted endpoint clearly defined?
A1 No, not in a specific way. The software predicts a range of endpoints (oncogenicity, 

mutagenicity, teratogenicity, etc.) contributing to the toxicity of an organic molecule. The user 
defines the species (soil invertebrates, fish, birds or mammals), route of administration (oral, 
inhalation/ intrabrachial in case of fish), duration of exposure (single, repeated or permanent) and 
dosage (low, medium or high). However, for more detailed information (e.g. if  “oncogenicity” is 
synonymous to “carcinogenicity”) on the endpoints it is necessary to contact the developer, as the 
manual does not provide a reference to a relevant scientific paper.

Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 
requirement under the legislation of interest (e.g. PPP directive), or is it related to one of the 
information requirements? 

A2 Yes, genotoxicity test data are required under the PPP.  
Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 

available? 
A3 Not applicable (knowledge-based model). The predictions are based on a fully available 

knowledge database, containing the list of 105 pre-defined toxic fragments, which cannot be 
modified. The knowledge is based on a report by the US EPA and scientific information 
collected by CompuDrug Chemistry Ltd. HazardExpert also allows the users to create their own 
knowledge bases with modified rules.

Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 
QMRF)

A4 The methodology is not well documented. The software manual neither describes it, nor indicates 
any relevant scientific papers. Basically, HazardExpert works by searching the query structure 
for known toxicophores which are held in the toxic fragments knowledge base. The identification 
of a toxicophore leads to estimates of the toxicity endpoints by triggering rules in the knowledge-
bases. The rules describe toxic segments and their effects on various biological systems, and are 
based on the toxicological knowledge and expert judgement, supported by QSAR models and 
fuzzy logic (which simulates the effects of different exposure conditions) (Dearden et al., 1997).

Q5 Is information available (in terms of statistical properties) concerning the performance of the 
model, including its goodness-of-fit, predictivity, robustness and error of prediction 
(uncertainty)?

A5 No, not for genotoxicity 
Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 

available statistics indicate that the model may have been overfitted?
A6 Not applicable – knowledge-based.
Q7 Does the model training set contain the chemical of interest?
A7 Not applicable – knowledge-based.
Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 The software does not provide any information on analogues to assist the user.
Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 

model?
A9 Not applicable. 
Q10 Can the model prediction be easily reproduced? 
A10 Yes, the software is easy to use, even for non-specialists.
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Table 11. Application of the checklist of questions to Toxtree

No Question (Q) and answer (A)

Q1 Is the predicted endpoint clearly defined?
A1 No. The software makes generic predictions of genotoxicity using two rulebases:

a) the Benigni/Bossa rulebase is a decision tree for estimating both the genotoxic and non-
genotoxic carcinogenicity potentials of chemicals, based on the rules published in the EC report 
“The Benigni/Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree”, by 
Benigni et al (2008).53 The present list of SAs (over 30) refers mainly to genotoxic 
carcinogenicity, and also includes a number of SAs for potential non-genotoxic carcinogens. In 
addition to the SAs, the module performs discriminant QSAR analyses for i) the mutagenic 
activity in the Salmonella typhimurium TA100 strain (Ames test) of aromatic amines (QSAR6) 
and alpha,beta-unsaturated aldehydes (QSAR13), and ii) the carcinogenicity in rodents of 
aromatic amines (QSAR8). The underlying mechanism(s) for the triggering of an alert for 
genotoxic carcinogenicity are not clearly defined, as these may include different possible 
mechanisms of genotoxicity (e.g. Ames mutagenicity, chromosomal aberration, chromosomal 
instability, etc.) which may be linked to carcinogenicity. 
b) the in vivo micronucleus assay plug-in, for the prediction of the outcome of this assay in 
rodents, is based on the SAs published in the EC report “Development of structural alerts for the 
in vivo micronucleus assay in rodents”, in Benigni et al. (2009) and  Benigni et al. (2010).
Thus, except for the QSAR model estimates of the Ames test and the SA-based predictions for 
the in vivo micronucleus assay, the predictions of (non)genotoxic carcinogenicity are intended in 
a broad sense, rather than representing specific mechanisms of genotoxic damage.

Q2 If the predicted endpoint is clearly defined (“yes” to Q1), does it represent a direct information 
requirement under the legislation of interest, or is it related to one of the information 
requirements? 

A2 Yes, genotoxicity test data are required under most types of chemicals legislation (e.g. industrial 
chemicals, pesticides, biocides)  

Q3 If the model is statistically based (as opposed to knowledge-based), is the model training set fully 
available? 

A3 Yes, in the case of the the QSAR models included in the Benigni/Bossa rulebase, the training sets 
are described in Benigni et al. (2008).

Q4 Is the method used to develop the model documented or referenced (e.g. in a scientific paper or 
QMRF)

A4 Yes, described in Benigni et al. (2008, 2009).
Q5 Is information available (in terms of statistical properties) concerning the performance of the 

model, including its goodness-of-fit, predictivity, robustness and error of prediction 
(uncertainty)?

A5 Yes. Measures of performance include r2 values and external predictivity values (Benigni et al., 
2009). In addition, the included SAs have been tested against the ISSCAN carcinogenicity and 
mutagenicity database, resulting in 70% and 78% accuracy, respectively.

Q6 If the model is statistically based (as opposed to knowledge-based), does examination of the 
available statistics indicate that the model may have been overfitted?

A6 There is no evidence of overfitting. The included QSAR models have been tested using external 
test sets, which resulted in high predictive accuracy (Benigni et al., 2009).
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Q7 Does the model training set contain the chemical of interest?
A7 No, parathion-methyl (true positive mutagen) and sodium nitroguaiacolate (false positive 

mutagen) are not included in the QSAR training sets.
Q8 Does the model make reliable predictions for analogues of the chemical structure of interest?
A8 The software does not provide information on analogues.
Q9 Is the model prediction substantiated with argumentation based on the applicability domain of the 

model?
A9 Yes. The QSAR models are applicable to aromatic amines and alpha,beta-unsaturated aldehydes, 

with a few specified exceptions. The SAs are considered to be generally applicable. 
Q10 Can the model prediction be easily reproduced? 
A10 Yes, the software is freely available from the JRC and easy to use, even for non-specialists. 

Software and supporting documents are available at:
http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE
The software is based on qualitative SARs (structural alerts) and (in the case of the 
Benigni/Bossa module) QSARs in form of transparent mathematical formulas. These algorithms 
can therefore be reprogrammed into a different software platform.
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Table 12. Methyl parathion and some of its analogues

Chemical and experimental 
mutagenicity

Structure Derek CAESAR ToxBoxes Lazar TOPKAT HazardExpert Toxtree

Methyl parathion
Dimethoxy-(4-nitrophenoxy)-thioxo-
phosphorane
CAS 298-00-0
S=P(Oc1ccc(cc1)[N+]([O-])=O)(OC)OC
Mutagen

Mutagen 
(TP)

Mutagen 
(TP)
In TS

IND
(p=0.631 )

In TS

Mutagen (TP)
Mutagen (TP)

In TS

Mutagen 
(TP)

Mutagen (TP) Mutagen 
(TP)

Fenitrothion
Dimethoxy-(3-methyl-4-nitro-phenoxy)-
thioxo-phosphorane
CAS 128-14-5 
S=P(Oc1cc(c(cc1)[N+]([O-])=O)C)(OC)OC
Non-mutagen

Mutagen 
(FP)

Non-
Mutagen 

(TN)
In TS

IND
(p=0.668 )

In TS

Mutagen (FP)
Mutagen (FP)

Mutagen 
(FP)

Mutagen (FP) Mutagen 
(FP)

Fenitrooxon
Dimethyl (3-methyl-4-nitro-phenyl) 
phosphate
CAS 2255-17-6 
[O-][N+](=O)c1c(cc(OP(=O)(OC)OC)cc1)C

Mutagen

Mutagen 
(TP)

Mutagen 
(TP)
In TS

Mutagen 
(TP)

(p=0.889)
In TS

Mutagen (TP)
Mutagen (TP)

Non-
Mutagen 

(FN)

Mutagen (TP) Mutagen 
(TP)

Hydroxymethylfenitrothion
Phosphorothioic acid
(5-dimethoxyphosphinothioyloxy-2-nitro-
phenyl)methanol
CAS 59417-73-1
S=P(Oc1cc(c(cc1)[N+]([O-
])=O)CO)(OC)OC

Mutagen 
(TP)

Mutagen 
(TP)

Mutagen 
(TP)

(p =0.796)
In TS

Mutagen (TP)
Mutagen (TP)

Mutagen 
(TP)

Mutagen (TP) Mutagen 
(TP)
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Mutagen
4-Aminofenitrothion
4-dimethoxyphosphinothioyloxy-2-methyl-
aniline
CAS 13306-69-9
S=P(Oc1ccc(c(c1)C)N)(OC)OC
Mutagen

Mutagen 
(TP)

Mutagen 
(TP)
In TS

Mutagen 
(TP)

(p =0.762)

Mutagen (TP)
Mutagen (TP)

In TS

Mutagen 
(TP)

Mutagen (TP) Mutagen 
(TP)

p – probability of positive Ames test result;  IND – indeterminate; FN – false negative; TN – true negative; TP – true positive; FP – false positive; In TS – compound in model training set
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Table 13. Sodium nitroguaiacolate and some of its analogues

Chemical and experimental 
mutagenicity

Structure Derek CAESAR ToxBoxes Lazar
Kazius / 

Toxbenchmark

TOPKAT HazardExpert Toxtree

Nitroguiacolate
2-methoxy-5-nitro-phenolate
CAS 67233-85-6
[Na+].[O-]c1cc(ccc1OC)[N+]([O-])=O

Non mutagen

Mutagen 
(FP)

Mutagen 
(FP)

IND
(p=0.643 )

Mutagen (FP)
Mutagen (FP)

Mutagen (FP) Mutagen (FP) Mutagen (FP)

m-Nitroanisole
1-methoxy-3-nitro-benzene
CAS 555-03-3
COc1cccc(c1)[N+]([O-])=O

Non mutagen 

Mutagen 
(FP)

Mutagen
(FP)

In TS

Mutagen (FP)
(p=0.738 )

In TS

Mutagen (FP)
Mutagen (FP)

In TS

Mutagen (FP) Mutagen (FP) Mutagen (FP)

o-Nitroanisole
1-methoxy-2-nitro-benzene
CAS 91-23-6
COc1c(cccc1)[N+](=O)[O-]

Mutagen

Mutagen 
(TP)

Mutagen 
(TP)
In TS 

Mutagen (TP)
(p=0.738 )

In TS

Mutagen (TP)
Mutagen (TP)

In TS

Mutagen (TP) Mutagen (TP) Mutagen (TP)

p-Nitroanisole
1-methoxy-4-nitro-benzene
CAS 100-17-4
COc1ccc(cc1)[N+]([O-])=O

Mutagen

Mutagen 
(TP)

Mutagen 
(TP)
In TS

Mutagen (TP)
(p=0.955)

In TS

Mutagen (TP)
Mutagen (TP)

In TS

Non-Mutagen 
(FN)

Mutagen (TP) Mutagen (TP)
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3-Methyl-4-nitrophenol
CAS 2581-34-2
O=[N+]([O-])c1c(cc(O)cc1)C

Non-mutagen

Non-
Mutagen 

(TN)

Mutagen 
(FP)

Non-Mutagen 
(TN)

(p= 0.193)
In TS

Mutagen (FP) 
Mutagen (FP)

Non-Mutagen 
(TN)

Mutagen (FP) Mutagen (FP)

m-Nitrophenetole
1-Ethoxy-3-nitrobenzene
CAS 621-52-3
CCOc1cc(ccc1)[N+](=O)[O-]

Non-mutagen

Mutagen 
(FP)

Mutagen 
(FP)

In TS

Mutagen (TP)
(p= 0.717)

Mutagen (FP) 
Mutagen (FP)

In TS

Non-Mutagen 
(TN)

Mutagen (FP) Mutagen (FP)

p – probability of positive Ames test result;  IND – indeterminate; FN – false negative; TN – true negative; TP – true positive; FP – false positive; In TS – compound in model training set
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