217 research outputs found
Astro2020 science white paper:stellar physics and galactic archeology using asteroseismology in the 2020's
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramatic increase in the number and quality of classical pulsator observations, providing unprecedented possibilities to study stellar physics and galactic stellar populations. In this white paper, we describe key science questions and necessary facilities to continue the asteroseismology revolution into the 2020's
IL-10R Blockade during Chronic Schistosomiasis Mansoni Results in the Loss of B Cells from the Liver and the Development of Severe Pulmonary Disease
In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection
Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells
<p>Abstract</p> <p>Background</p> <p>Mushroom polysaccharides have traditionally been used for the prevention and treatment of a multitude of disorders like infectious illnesses, cancers and various autoimmune diseases. Crude mushroom extracts have been tested without detailed chemical analyses of its polysaccharide content. For the present study we decided to chemically determine the carbohydrate composition of semi-purified extracts from 2 closely related and well known basidiomycete species, i.e. <it>Agaricus bisporus </it>and <it>A. brasiliensis </it>and to study their effects on the innate immune system, in particular on the <it>in vitro </it>induction of pro-inflammatory cytokines, using THP-1 cells.</p> <p>Methods</p> <p>Mushroom polysaccharide extracts were prepared by hot water extraction and precipitation with ethanol. Their composition was analyzed by GC-MS and NMR spectroscopy. PMA activated THP-1 cells were treated with the extracts under different conditions and the production of pro-inflammatory cytokines was evaluated by qPCR.</p> <p>Results</p> <p>Semi-purified polysaccharide extracts of <it>A. bisporus </it>and <it>A. brasiliensis </it>(= <it>blazei</it>) were found to contain (1→6),(1→4)-linked α-glucan, (1→6)-linked β-glucan, and mannogalactan. Their proportions were determined by integration of <sup>1</sup>H-NMR signs, and were considerably different for the two species. <it>A. brasiliensis </it>showed a higher content of β-glucan, while <it>A. bisporus </it>presented mannogalactan as its main polysaccharide. The extracts induced a comparable increase of transcription of the pro-inflammatory cytokine genes IL-1β and TNF-α as well as of COX-2 in PMA differentiated THP-1 cells. Pro-inflammatory effects of bacterial LPS in this assay could be reduced significantly by the simultaneous addition of <it>A. brasiliensis </it>extract.</p> <p>Conclusions</p> <p>The polysaccharide preparations from the closely related species <it>A. bisporus </it>and <it>A. brasiliensis </it>show major differences in composition: <it>A. bisporus </it>shows high mannogalactan content whereas <it>A. brasiliensis </it>has mostly β-glucan. Semi-purified polysaccharide extracts from both <it>Agaricus </it>species stimulated the production of pro-inflammatory cytokines and enzymes, while the polysaccharide extract of <it>A. brasiliensis </it>reduced synthesis of these cytokines induced by LPS, suggesting programmable immunomodulation.</p
LXR Deficiency Confers Increased Protection against Visceral Leishmania Infection in Mice
Leishmania spp. are protozoan single-cell parasites that are transmitted to humans by the bite of an infected sand fly, and can cause a wide spectrum of disease, ranging from self-healing skin lesions to potentially fatal systemic infections. Certain species of Leishmania that cause visceral (systemic) disease are a source of significant mortality worldwide. Here, we use a mouse model of visceral Leishmania infection to investigate the effect of a host gene called LXR. The LXRs have demonstrated important functions in both cholesterol regulation and inflammation. These processes, in turn, are closely related to lipid metabolism and the development of atherosclerosis. LXRs have also previously been shown to be involved in protection against other intracellular pathogens that infect macrophages, including certain bacteria. We demonstrate here that LXR is involved in susceptibility to Leishmania, as animals deficient in the LXR gene are much more resistant to infection with the parasite. We also demonstrate that macrophages lacking LXR kill parasites more readily, and make higher levels of nitric oxide (an antimicrobial mediator) and IL-1β (an inflammatory cytokine) in response to Leishmania infection. These results could have important implications in designing therapeutics against this deadly pathogen, as well as other intracellular microbial pathogens
Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge
Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection
Selection for Genetic Variation Inducing Pro-Inflammatory Responses under Adverse Environmental Conditions in a Ghanaian Population
BACKGROUND:Chronic inflammation is involved in the pathogenesis of chronic age-associated, degenerative diseases. Pro-inflammatory host responses that are deleterious later in life may originate from evolutionary selection for genetic variation mediating resistance to infectious diseases under adverse environmental conditions. METHODOLOGY/PRINCIPAL FINDINGS:In the Upper-East region of Ghana where infection has remained the leading cause of death, we studied the effect on survival of genetic variations at the IL10 gene locus that have been associated with chronic diseases. Here we show that an IL10 haplotype that associated with a pro-inflammatory innate immune response, characterised by low IL-10 (p = 0.028) and high TNF-alpha levels (p = 1.39 x 10(-3)), was enriched among Ghanaian elders (p = 2.46 x 10(-6)). Furthermore, in an environment where the source of drinking water (wells/rivers vs. boreholes) influences mortality risks (HR 1.28, 95% CI [1.09-1.50]), we observed that carriers of the pro-inflammatory haplotype have a survival advantage when drinking from wells/rivers but a disadvantage when drinking from boreholes (p(interaction) = 0.013). Resequencing the IL10 gene region did not uncover any additional common variants in the pro-inflammatory haplotype to those SNPs that were initially genotyped. CONCLUSIONS/SIGNIFICANCE:Altogether, these data lend strong arguments for the selection of pro-inflammatory host responses to overcome fatal infection and promote survival in adverse environments
The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection
<p>Abstract</p> <p>Background</p> <p>Alternatively activated macrophages (AAMϕ) play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs) plays any role in AAMϕ induction when young <it>Fasciola hepatica </it>penetrates the liver capsule and migrates through the liver tissue is still unclear.</p> <p>Results</p> <p>The data show that the lack of myeloid differentiation factor 88 (MyD88) has no effect on the AAMϕ derived from the bone marrow (BMMϕ) <it>in vitro </it>and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα), and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in <it>F. hepatica</it>-infected mice in the absence of MyD88 <it>in vitro </it>and in the pleural cavity lavage <it>in vivo</it>. In addition, MyD88-deficiency has no effect on the arginase production of the <it>F. hepatica </it>elicited macrophages (Fe Mϕs), production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post <it>F. hepatica </it>infection.</p> <p>Conclusions</p> <p>The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post <it>F. hepatica </it>infection.</p
Interleukin-10 Mediated Autoregulation of Murine B-1 B-Cells and Its Role in Borrelia hermsii Infection
B cells are typically characterized as positive regulators of the immune response, primarily by producing antibodies. However, recent studies indicate that various subsets of B cells can perform regulatory functions mainly through IL-10 secretion. Here we discovered that peritoneal B-1 (B-1P) cells produce high levels of IL-10 upon stimulation with several Toll-like receptor (TLR) ligands. High levels of IL-10 suppressed B-1P cell proliferation and differentiation response to all TLR ligands studied in an autocrine manner in vitro and in vivo. IL-10 that accumulated in cultures inhibited B-1P cells at second and subsequent cell divisions mainly at the G1/S interphase. IL-10 inhibits TLR induced B-1P cell activation by blocking the classical NF-κB pathway. Co-stimulation with CD40 or BAFF abrogated the IL-10 inhibitory effect on B-1P cells during TLR stimulation. Finally, B-1P cells adoptively transferred from the peritoneal cavity of IL-10−/− mice showed better clearance of Borrelia hermsii than wild-type B-1P cells. This study described a novel autoregulatory property of B-1P cells mediated by B-1P cell derived IL-10, which may affect the function of B-1P cells in infection and autoimmunity
Type I Interferon Induction Is Detrimental during Infection with the Whipple's Disease Bacterium, Tropheryma whipplei
Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN) response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection
- …