1,586 research outputs found
Short-lived spots in solar-like stars as observed by CoRoT
Context. CoRoT light curves have an unprecedented photometric quality, having
simultaneously a high signal-to-noise ratio, a long time span and a nearly
continuous duty-cycle. Aims. We analyse the light-curves of four bright targets
observed in the seismology field and study short-lived small spots in
solar-like stars. Methods. We present a simple spot modeling by iterative
analysis. Its ability to extract relevant parameters is ensured by implementing
relaxation steps to avoid convergence to local minima of the sum of the
residuals between observations and modeling. The use of Monte-Carlo simulations
allows us to estimate the performance of the fits. Results. Our starspot
modeling gives a representation of the spots on these stars in agreement with
other well tested methods. Within this framework, parameters such as rigid-body
rotation and spot lifetimes seem to be precisely determined. Then, the
lifetime/rotation period ratios are in the range 0.5 - 2, and there is clear
evidence for differential rotation.Comment: 11 pages Accepted in A&
SYMPA, a dedicated instrument for Jovian Seismology. II. Real performance and first results
Context. Due to its great mass and its rapid formation, Jupiter has played a
crucial role in shaping the Solar System. The knowledge of its internal
structure would strongly constrain the solar system formation mechanism.
Seismology is the most efficient way to probe directly the internal structure
of giant planets. Aims. SYMPA is the first instrument dedicated to the
observations of free oscillations of Jupiter. Principles and theoretical
performance have been presented in paper I. This second paper describes the
data processing method, the real instrumental performance and presents the
first results of a Jovian observation run, lead in 2005 at Teide Observatory.
Methods. SYMPA is a Fourier transform spectrometer which works at fixed optical
path difference. It produces Doppler shift maps of the observed object.
Velocity amplitude of Jupiter's oscillations is expected below 60 cm/s. Results
Despite light technical defects, the instrument demonstrated to work correctly,
being limited only by photon noise, after a careful analysis. A noise level of
about 12 cm/s has been reached on a 10-night observation run, with 21 % duty
cycle, which is 5 time better than previous similar observations. However, no
signal from Jupiter is clearly highlighted.Comment: 13 pages, 26 figure
Asteroseismology of evolved stars to constrain the internal transport of angular momentum. VI. Testing a parametric formulation for the azimuthal magneto-rotational instability
Asteroseismic measurements of the internal rotation rate in evolved stars
pointed out to a lack of angular momentum (AM) transport in stellar evolution
models. Several physical processes in addition to hydrodynamical ones were
proposed as candidates for the missing mechanism. Nonetheless, no current
candidate can satisfy all the constraints provided by asteroseismology. We
revisit the role of a candidate process whose efficiency scales with the
contrast between the rotation rate of the core and the surface which was
proposed to be related to the azimuthal magneto-rotational instability (AMRI)
by Spada et al. We compute stellar evolution models of low- and
intermediate-mass stars with the parametric formulation of AM transport
proposed by Spada et al. until the end of the core-helium burning for low- and
intermediate-mass stars and compare our results to the latest asteroseismic
constraints available in the post main sequence phase. Both hydrogen-shell
burning stars in the red giant branch and core-helium burning stars of low- and
intermediate-mass in the mass range can be simultaneously reproduced by this kind of parametrisation.
Given current constraints from asteroseismology, the core rotation rate of
post-main sequence stars seems to be well explained by a process whose
efficiency is regulated by the internal degree of differential rotation in
radiative zones.Comment: Accepted for publication in Astronomy & Astrophysics. 10 pages, 10
figures, 1 appendi
Influence of antisymmetric exchange interaction on quantum tunneling of magnetization in a dimeric molecular magnet Mn6
We present magnetization measurements on the single molecule magnet Mn6,
revealing various tunnel transitions inconsistent with a giant-spin
description. We propose a dimeric model of the molecule with two coupled spins
S=6, which involves crystal-field anisotropy, symmetric Heisenberg exchange
interaction, and antisymmetric Dzyaloshinskii-Moriya exchange interaction. We
show that this simplified model of the molecule explains the experimentally
observed tunnel transitions and that the antisymmetric exchange interaction
between the spins gives rise to tunneling processes between spin states
belonging to different spin multiplets.Comment: 5 pages, 4 figure
HD 46375: seismic and spectropolarimetric analysis of a young Sun hosting a Saturn-like planet
HD 46375 is known to host a Saturn-like exoplanet orbiting at 0.04 AU from
its host star. Stellar light reflected by the planet was tentatively identified
in the 34-day CoRoT run acquired in October-November 2008. We constrain the
properties of the magnetic field of HD 46375 based on spectropolarimetric
observations with the NARVAL spectrograph at the Pic du Midi observatory. In
addition, we use a high-resolution NARVAL flux spectrum to contrain the
atmospheric parameters. With these constraints, we perform an asteroseismic
analysis and modelling of HD 46375 using the frequencies extracted from the
CoRoT light curve. We used Zeeman Doppler imaging to reconstruct the magnetic
map of the stellar surface. In the spectroscopic analysis we fitted isolated
lines using 1D LTE atmosphere models. This analysis was used to constrain the
effective temperature, surface gravity, and chemical composition of the star.
To extract information about the p-mode oscillations, we used a technique based
on the envelope autocorrelation function (EACF). From the Zeeman Doppler
imaging observations, we observe a magnetic field of ~5 gauss. From the
spectral analysis, HD 46375 is inferred to be an unevolved K0 type star with
high metallicity [Fe/H]=+0.39. Owing to the relative faintness of the star
(m_hip=8.05), the signal-to-noise ratio is too low to identify individual
modes. However, we measure the p-mode excess power and large separation Delta
nu_0=153.0 +/- 0.7 muHz. We are able do constrain the fundamental parameters of
the star thanks to spectrometric and seismic analyses. We conclude that HD
46375 is similar to a young version of Alpha-CenB. This work is of special
interest because of its combination of exoplanetary science and
asteroseismology, which are the subjects of the current Kepler mission and the
proposed PLATO mission.Comment: Accepted in Astronomy & Astrophysics. 8 pages, 9 figure
Modelling a high-mass red giant observed by CoRoT
The G6 giant HR\,2582 (HD\,50890) was observed by CoRoT for approximately 55
days. Mode frequencies are extracted from the observed Fourier spectrum of the
light curve. Numerical stellar models are then computed to determine the
characteristics of the star (mass, age, etc...) from the comparison with
observational constraints. We provide evidence for the presence of solar-like
oscillations at low frequency, between 10 and 20\,Hz, with a regular
spacing of Hz between consecutive radial orders. Only radial
modes are clearly visible. From the models compatible with the observational
constraints used here, We find that HR\,2582 (HD\,50890) is a massive star with
a mass in the range (3--\,5\,), clearly above the red clump. It
oscillates with rather low radial order ( = 5\,--\,12) modes. Its
evolutionary stage cannot be determined with precision: the star could be on
the ascending red giant branch (hydrogen shell burning) with an age of
approximately 155 Myr or in a later phase (helium burning). In order to obtain
a reasonable helium amount, the metallicity of the star must be quite subsolar.
Our best models are obtained with a mixing length significantly smaller than
that obtained for the Sun with the same physical description (except
overshoot). The amount of core overshoot during the main-sequence phase is
found to be mild, of the order of 0.1\,.Comment: Accepted in A&
Evidence for a sharp structure variation inside a red-giant star
The availability of precisely determined frequencies of radial and non-radial
oscillation modes in red giants is finally paving the way for detailed studies
of the internal structure of these stars. We look for the seismic signature of
regions of sharp structure variation in the internal structure of the CoRoT
target HR7349. We analyse the frequency dependence of the large frequency
separation and second frequency differences, as well as the behaviour of the
large frequency separation obtained with the envelope auto-correlation
function. We find evidence for a periodic component in the oscillation
frequencies, i.e. the seismic signature of a sharp structure variation in
HR7349. In a comparison with stellar models we interpret this feature as caused
by a local depression of the sound speed that occurs in the helium
second-ionization region. Using solely seismic constraints this allows us to
estimate the mass (M=1.2^{+0.6}_{-0.4} Msun) and radius (R=12.2^{+2.1}_{-1.8}
Rsun) of HR7349, which agrees with the location of the star in an HR diagram.Comment: 4 pages, 5 figures, accepted in A&A Letter
Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385
The star HD 49385 is the first G-type solar-like pulsator observed in the
seismology field of the space telescope CoRoT. The satellite collected 137 days
of high-precision photometric data on this star, confirming that it presents
solar-like oscillations. HD 49385 was also observed in spectroscopy with the
NARVAL spectrograph in January 2009. Our goal is to characterize HD 49385 using
both spectroscopic and seismic data. The fundamental stellar parameters of HD
49385 are derived with the semi-automatic software VWA, and the projected
rotational velocity is estimated by fitting synthetic profiles to isolated
lines in the observed spectrum. A maximum likelihood estimation is used to
determine the parameters of the observed p modes. We perform a global fit, in
which modes are fitted simultaneously over nine radial orders, with degrees
ranging from l=0 to l=3 (36 individual modes). Precise estimates of the
atmospheric parameters (Teff, [M/H], log g) and of the vsini of HD 49385 are
obtained. The seismic analysis of the star leads to a clear identification of
the modes for degrees l=0,1,2. Around the maximum of the signal (nu=1013
microHz), some peaks are found significant and compatible with the expected
characteristics of l=3 modes. Our fit yields robust estimates of the
frequencies, linewidths and amplitudes of the modes. We find amplitudes of
about 5.6 +/- 0.8 ppm for radial modes at the maximum of the signal. The
lifetimes of the modes range from one day (at high frequency) to a bit more
than two days (at low frequency). Significant peaks are found outside the
identified ridges and are fitted. They are attributed to mixed modes.Comment: 13 pages, 14 figures, accepted in A&
Galactic Archaeology with CoRoT and APOGEE: Creating mock observations from a chemodynamical model
In a companion paper, we have presented the combined
asteroseismic-spectroscopic dataset obtained from CoRoT lightcurves and APOGEE
infra-red spectra for 678 solar-like oscillating red giants in two fields of
the Galactic disc (CoRoGEE). We have measured chemical abundance patterns,
distances, and ages of these field stars which are spread over a large radial
range of the Milky Way's disc. Here we show how to simulate this dataset using
a chemodynamical Galaxy model. We also demonstrate how the observation
procedure influences the accuracy of our estimated ages.Comment: 5 pages, 6 figures. To appear in Astronomische Nachrichten, special
issue "Reconstruction the Milky Way's History: Spectroscopic surveys,
Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J.
Montalb\'an, and M. Steffe
The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations
From the seismic data obtained by CoRoT for the star HD 49933 it is possible,
as for the Sun, to constrain models of the excitation of acoustic modes by
turbulent convection. We compare a stochastic excitation model described in
Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star
that is rather metal poor and significantly hotter than the Sun. Using the mode
linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation
rates computed in Paper I, we derive the expected surface velocity amplitudes
of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic
approximation relating the mode amplitudes in intensity to those in velocity,
we derive the expected values of the mode amplitude in intensity. Our amplitude
calculations are within 1-sigma error bars of the mode surface velocity
spectrum derived with the HARPS spectrograph. The same is found with the mode
amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other
hand, at high frequency, our calculations significantly depart from the CoRoT
and HARPS measurements. We show that assuming a solar metal abundance rather
than the actual metal abundance of the star would result in a larger
discrepancy with the seismic data. Furthermore, calculations that assume the
``new'' solar chemical mixture are in better agreement with the seismic data
than those that assume the ``old'' solar chemical mixture. These results
validate, in the case of a star significantly hotter than the Sun and Alpha Cen
A, the main assumptions in the model of stochastic excitation. However, the
discrepancies seen at high frequency highlight some deficiencies of the
modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in
Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references.
Language improvement
- …