1,586 research outputs found

    Short-lived spots in solar-like stars as observed by CoRoT

    Full text link
    Context. CoRoT light curves have an unprecedented photometric quality, having simultaneously a high signal-to-noise ratio, a long time span and a nearly continuous duty-cycle. Aims. We analyse the light-curves of four bright targets observed in the seismology field and study short-lived small spots in solar-like stars. Methods. We present a simple spot modeling by iterative analysis. Its ability to extract relevant parameters is ensured by implementing relaxation steps to avoid convergence to local minima of the sum of the residuals between observations and modeling. The use of Monte-Carlo simulations allows us to estimate the performance of the fits. Results. Our starspot modeling gives a representation of the spots on these stars in agreement with other well tested methods. Within this framework, parameters such as rigid-body rotation and spot lifetimes seem to be precisely determined. Then, the lifetime/rotation period ratios are in the range 0.5 - 2, and there is clear evidence for differential rotation.Comment: 11 pages Accepted in A&

    SYMPA, a dedicated instrument for Jovian Seismology. II. Real performance and first results

    Full text link
    Context. Due to its great mass and its rapid formation, Jupiter has played a crucial role in shaping the Solar System. The knowledge of its internal structure would strongly constrain the solar system formation mechanism. Seismology is the most efficient way to probe directly the internal structure of giant planets. Aims. SYMPA is the first instrument dedicated to the observations of free oscillations of Jupiter. Principles and theoretical performance have been presented in paper I. This second paper describes the data processing method, the real instrumental performance and presents the first results of a Jovian observation run, lead in 2005 at Teide Observatory. Methods. SYMPA is a Fourier transform spectrometer which works at fixed optical path difference. It produces Doppler shift maps of the observed object. Velocity amplitude of Jupiter's oscillations is expected below 60 cm/s. Results Despite light technical defects, the instrument demonstrated to work correctly, being limited only by photon noise, after a careful analysis. A noise level of about 12 cm/s has been reached on a 10-night observation run, with 21 % duty cycle, which is 5 time better than previous similar observations. However, no signal from Jupiter is clearly highlighted.Comment: 13 pages, 26 figure

    Asteroseismology of evolved stars to constrain the internal transport of angular momentum. VI. Testing a parametric formulation for the azimuthal magneto-rotational instability

    Full text link
    Asteroseismic measurements of the internal rotation rate in evolved stars pointed out to a lack of angular momentum (AM) transport in stellar evolution models. Several physical processes in addition to hydrodynamical ones were proposed as candidates for the missing mechanism. Nonetheless, no current candidate can satisfy all the constraints provided by asteroseismology. We revisit the role of a candidate process whose efficiency scales with the contrast between the rotation rate of the core and the surface which was proposed to be related to the azimuthal magneto-rotational instability (AMRI) by Spada et al. We compute stellar evolution models of low- and intermediate-mass stars with the parametric formulation of AM transport proposed by Spada et al. until the end of the core-helium burning for low- and intermediate-mass stars and compare our results to the latest asteroseismic constraints available in the post main sequence phase. Both hydrogen-shell burning stars in the red giant branch and core-helium burning stars of low- and intermediate-mass in the mass range 1MM2.5M1 M_{\odot} \lesssim M \lesssim 2.5 M_{\odot} can be simultaneously reproduced by this kind of parametrisation. Given current constraints from asteroseismology, the core rotation rate of post-main sequence stars seems to be well explained by a process whose efficiency is regulated by the internal degree of differential rotation in radiative zones.Comment: Accepted for publication in Astronomy & Astrophysics. 10 pages, 10 figures, 1 appendi

    Influence of antisymmetric exchange interaction on quantum tunneling of magnetization in a dimeric molecular magnet Mn6

    Get PDF
    We present magnetization measurements on the single molecule magnet Mn6, revealing various tunnel transitions inconsistent with a giant-spin description. We propose a dimeric model of the molecule with two coupled spins S=6, which involves crystal-field anisotropy, symmetric Heisenberg exchange interaction, and antisymmetric Dzyaloshinskii-Moriya exchange interaction. We show that this simplified model of the molecule explains the experimentally observed tunnel transitions and that the antisymmetric exchange interaction between the spins gives rise to tunneling processes between spin states belonging to different spin multiplets.Comment: 5 pages, 4 figure

    HD 46375: seismic and spectropolarimetric analysis of a young Sun hosting a Saturn-like planet

    Full text link
    HD 46375 is known to host a Saturn-like exoplanet orbiting at 0.04 AU from its host star. Stellar light reflected by the planet was tentatively identified in the 34-day CoRoT run acquired in October-November 2008. We constrain the properties of the magnetic field of HD 46375 based on spectropolarimetric observations with the NARVAL spectrograph at the Pic du Midi observatory. In addition, we use a high-resolution NARVAL flux spectrum to contrain the atmospheric parameters. With these constraints, we perform an asteroseismic analysis and modelling of HD 46375 using the frequencies extracted from the CoRoT light curve. We used Zeeman Doppler imaging to reconstruct the magnetic map of the stellar surface. In the spectroscopic analysis we fitted isolated lines using 1D LTE atmosphere models. This analysis was used to constrain the effective temperature, surface gravity, and chemical composition of the star. To extract information about the p-mode oscillations, we used a technique based on the envelope autocorrelation function (EACF). From the Zeeman Doppler imaging observations, we observe a magnetic field of ~5 gauss. From the spectral analysis, HD 46375 is inferred to be an unevolved K0 type star with high metallicity [Fe/H]=+0.39. Owing to the relative faintness of the star (m_hip=8.05), the signal-to-noise ratio is too low to identify individual modes. However, we measure the p-mode excess power and large separation Delta nu_0=153.0 +/- 0.7 muHz. We are able do constrain the fundamental parameters of the star thanks to spectrometric and seismic analyses. We conclude that HD 46375 is similar to a young version of Alpha-CenB. This work is of special interest because of its combination of exoplanetary science and asteroseismology, which are the subjects of the current Kepler mission and the proposed PLATO mission.Comment: Accepted in Astronomy & Astrophysics. 8 pages, 9 figure

    Modelling a high-mass red giant observed by CoRoT

    Get PDF
    The G6 giant HR\,2582 (HD\,50890) was observed by CoRoT for approximately 55 days. Mode frequencies are extracted from the observed Fourier spectrum of the light curve. Numerical stellar models are then computed to determine the characteristics of the star (mass, age, etc...) from the comparison with observational constraints. We provide evidence for the presence of solar-like oscillations at low frequency, between 10 and 20\,μ\muHz, with a regular spacing of (1.7±0.1)μ(1.7\pm0.1)\muHz between consecutive radial orders. Only radial modes are clearly visible. From the models compatible with the observational constraints used here, We find that HR\,2582 (HD\,50890) is a massive star with a mass in the range (3--\,5\,MM_{\odot}), clearly above the red clump. It oscillates with rather low radial order (nn = 5\,--\,12) modes. Its evolutionary stage cannot be determined with precision: the star could be on the ascending red giant branch (hydrogen shell burning) with an age of approximately 155 Myr or in a later phase (helium burning). In order to obtain a reasonable helium amount, the metallicity of the star must be quite subsolar. Our best models are obtained with a mixing length significantly smaller than that obtained for the Sun with the same physical description (except overshoot). The amount of core overshoot during the main-sequence phase is found to be mild, of the order of 0.1\,HpH_{\rm p}.Comment: Accepted in A&

    Evidence for a sharp structure variation inside a red-giant star

    Full text link
    The availability of precisely determined frequencies of radial and non-radial oscillation modes in red giants is finally paving the way for detailed studies of the internal structure of these stars. We look for the seismic signature of regions of sharp structure variation in the internal structure of the CoRoT target HR7349. We analyse the frequency dependence of the large frequency separation and second frequency differences, as well as the behaviour of the large frequency separation obtained with the envelope auto-correlation function. We find evidence for a periodic component in the oscillation frequencies, i.e. the seismic signature of a sharp structure variation in HR7349. In a comparison with stellar models we interpret this feature as caused by a local depression of the sound speed that occurs in the helium second-ionization region. Using solely seismic constraints this allows us to estimate the mass (M=1.2^{+0.6}_{-0.4} Msun) and radius (R=12.2^{+2.1}_{-1.8} Rsun) of HR7349, which agrees with the location of the star in an HR diagram.Comment: 4 pages, 5 figures, accepted in A&A Letter

    Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385

    Full text link
    The star HD 49385 is the first G-type solar-like pulsator observed in the seismology field of the space telescope CoRoT. The satellite collected 137 days of high-precision photometric data on this star, confirming that it presents solar-like oscillations. HD 49385 was also observed in spectroscopy with the NARVAL spectrograph in January 2009. Our goal is to characterize HD 49385 using both spectroscopic and seismic data. The fundamental stellar parameters of HD 49385 are derived with the semi-automatic software VWA, and the projected rotational velocity is estimated by fitting synthetic profiles to isolated lines in the observed spectrum. A maximum likelihood estimation is used to determine the parameters of the observed p modes. We perform a global fit, in which modes are fitted simultaneously over nine radial orders, with degrees ranging from l=0 to l=3 (36 individual modes). Precise estimates of the atmospheric parameters (Teff, [M/H], log g) and of the vsini of HD 49385 are obtained. The seismic analysis of the star leads to a clear identification of the modes for degrees l=0,1,2. Around the maximum of the signal (nu=1013 microHz), some peaks are found significant and compatible with the expected characteristics of l=3 modes. Our fit yields robust estimates of the frequencies, linewidths and amplitudes of the modes. We find amplitudes of about 5.6 +/- 0.8 ppm for radial modes at the maximum of the signal. The lifetimes of the modes range from one day (at high frequency) to a bit more than two days (at low frequency). Significant peaks are found outside the identified ridges and are fitted. They are attributed to mixed modes.Comment: 13 pages, 14 figures, accepted in A&

    Galactic Archaeology with CoRoT and APOGEE: Creating mock observations from a chemodynamical model

    Get PDF
    In a companion paper, we have presented the combined asteroseismic-spectroscopic dataset obtained from CoRoT lightcurves and APOGEE infra-red spectra for 678 solar-like oscillating red giants in two fields of the Galactic disc (CoRoGEE). We have measured chemical abundance patterns, distances, and ages of these field stars which are spread over a large radial range of the Milky Way's disc. Here we show how to simulate this dataset using a chemodynamical Galaxy model. We also demonstrate how the observation procedure influences the accuracy of our estimated ages.Comment: 5 pages, 6 figures. To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalb\'an, and M. Steffe

    The CoRoT target HD 49933: 2- Comparison of theoretical mode amplitudes with observations

    Full text link
    From the seismic data obtained by CoRoT for the star HD 49933 it is possible, as for the Sun, to constrain models of the excitation of acoustic modes by turbulent convection. We compare a stochastic excitation model described in Paper I (arXiv:0910.4027) with the asteroseismology data for HD 49933, a star that is rather metal poor and significantly hotter than the Sun. Using the mode linewidths measured by CoRoT for HD 49933 and the theoretical mode excitation rates computed in Paper I, we derive the expected surface velocity amplitudes of the acoustic modes detected in HD 49933. Using a calibrated quasi-adiabatic approximation relating the mode amplitudes in intensity to those in velocity, we derive the expected values of the mode amplitude in intensity. Our amplitude calculations are within 1-sigma error bars of the mode surface velocity spectrum derived with the HARPS spectrograph. The same is found with the mode amplitudes in intensity derived for HD 49933 from the CoRoT data. On the other hand, at high frequency, our calculations significantly depart from the CoRoT and HARPS measurements. We show that assuming a solar metal abundance rather than the actual metal abundance of the star would result in a larger discrepancy with the seismic data. Furthermore, calculations that assume the ``new'' solar chemical mixture are in better agreement with the seismic data than those that assume the ``old'' solar chemical mixture. These results validate, in the case of a star significantly hotter than the Sun and Alpha Cen A, the main assumptions in the model of stochastic excitation. However, the discrepancies seen at high frequency highlight some deficiencies of the modelling, whose origin remains to be understood.Comment: 8 pages, 3 figures (B-W and color), accepted for publication in Astronomy & Astrophysics. Corrected typo in Eq. (4). Updated references. Language improvement
    corecore