131 research outputs found

    Isolation and subfractionation on ficoll gradients of adult rat hepatocytes. Size, morphology, and biochemical characteristics of cell fractions.

    Full text link
    The recirculating perfusion of adult rat liver with a Ca++ free Hanks' solution produces a release of the adhesiveness of cells and a cleaving of the desmosomes. The addition of collagenase and hyaluronidase to the perfusion medium leads to complete dissociation of the liver tissue into a mixture of isolated cells and cell cords in which the hepatocytes remain connected with specific junctional differentiations, namely the gap and tight junctions. Individual cells are released by submitting the suspension of cell trabeculae to a gentle rolling. The gap junctions are ruptured at least in 1 of the 2 adjacent cells and remain generally attached to the other cell taking with them a small portion of cytoplasm. This technique of isolation of hepatocytes yields about 60 to 65% of the parenchymal cells contained in a liver; endothelial cells and other cells of the connective tissue are recovered. The ultrastructural preservation of the isolated hepatocytes is excellent and the glucose 6 phosphatase activity, confined to the endoplasmic reticulum, appears unaltered in most cells. Protein, DNA and RNA recovery in the preparations of isolated hepatocytes is satisfactory, amounting to 70% of that found in liver homogenate; glycogen, the most labile component examined, is partly lost or degraded during the manipulations. Cell diameters measured by different methods confirm the preservation of the original volume of the in situ hepatocytes and the presence of more than 1 type of parenchymal cell. By submitting this heterogenous cell population to an isopycnic density gradient centrifugation, 2 types of hepatocyes can be distinguished: the light hepatocytes, with a mean diameter of 20.5 μm and a mean density of 1.10, are characterized by an extended smooth walled endoplasmic reticulum entrapping dispersed α glycogen particles; the heavy hepatocytes, with a mean diameter of 19.0 μm and a mean density of 1.14, present a relatively reduced compartment of smooth endoplasmic reticulum, but large accumulations of glycogen. It is suggested that the cell fraction of low density is enriched in centrolobular cells and the high density fraction in perilobular hepatocytes.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    An in-situ synchrotron XAS methodology for surface analysis under high temperature, pressure and shear

    Get PDF
    The complex tribochemical nature of lubricated tribological contacts is inaccessible in real time without altering their initial state. To overcome this issue, a new design of a pin-on-disc tribological apparatus was developed and combined with synchrotron X-ray absorption spectroscopy (XAS). Using the designed apparatus, it is possible to study in situ the transient decomposition reactions of various oil additives on different surfaces under a wide range of realistic operating conditions of contact pressure (1.0–3.0 GPa), temperature (25–120 °C), and sliding speed (30–3000 rpm or 0.15–15 m/s). To test the apparatus, several tribological tests were performed at different shearing times ranging from 2.5 to 60 min. These tests were carried out under helium atmosphere at a temperature of 80  °C, contact pressure of 2.2 GPa, and sliding speed of 50 rpm. The XAS experiments indicate that the zinc dialkyldithiophosphate antiwear additive decomposes in the oil to form a tribofilm on the iron surface at different reaction kinetics from the ones of the thermal film. The tribofilm composition evolves much faster than the one of the thermal film, which confirms that the formation of the tribofilm is a thermally activated process similar to the one of the thermal film but accelerated by shear. Furthermore, the results indicate that the sulfur of the formed film, whether a tribofilm or a thermal film, appears initially in the form of sulfate, with some sulfide, which under heat or shear is reduced into mainly sulfide

    Adult rat hepatocytes in primary monolayer culture. Ultrastructural characteristics of intercellular contacts and cell membrane differentiations.

    Full text link
    Primary monolayer cultures were obtained in 60 mm petri dishes by incubating 3 x 106 isolated hepatocytes at 37°C in Dulbecco's medium supplemented with 17% fetal calf serum. The ultrastructure of monolayer cells was examined after various incubation periods. Within 4 h of plating, the isolated spherical cells adhere to the plastic surface, establish their first contacts by numerous intertwined microvilli, and form a new hemidesmosomes. After 12 h of culture, wide branched trabeculae of flattened polyhedral cells extend in all directions. Finally, after 24 h of culture, bile canaliculi are reconstituted, and a biliary polarity is recovered: the Golgi elements, which are scattered throughout the cytoplasm in the isolated cells, are reassembled in front of the newly formed bile canaliculi, symmetrically in the adjacent cells; lysosomes are concentrated in that region, and microtubules reappear. Concomitantly, plasma membrane differentiations, namely desmosomes and tight junctions, develop. Tight junctions sealing the bile ducts constitute a barrier to the passage of ruthenium red and horseradish peroxidase. De novo formation of these junctions was studied by the freeze etching technique: 10 nm particles compose a network of anastomosed linear arrays in the vicinity of the bile canalculi; in the next step of differentiation, the particles fuse, form short ridge segments and finally continuous branched smooth strands, characteristic of the mature tight junction.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Vivianite-parasymplesite solid solution: A sink for arsenic in ferruginous environments?

    Get PDF
    Vivianite, a hydrated ferrous phosphate [FeII3(PO4)2 · 8 H2O] that forms in oxygen-poor, but Fe2+-rich conditions is important in nutrient cycling in anoxic environments. In natural vivianites, isomorphic substitution of divalent cations for structural Fe(II) are typical. However, anion substitution is rare; in particular, arsenate (AsVO43−) substitution has never been documented in natural vivianites. Only partial substitution has been reported in synthetic analogues, and parasymplesite [FeII3(AsO4)2 · 8 H2O], the arsenic end member of the vivianite mineral group, is found in hydrothermal deposits. In this study, we detail structural changes in synthesised As-vivianites (FeII3[(PO4)1−x(AsO4)x]2 · 8 H2O) with systematically increased degrees of As(V) substitution (0.22 ≤ x ≤ 0.95). As(V) was successfully incorporated into the vivianite crystal structure, creating a homogenous, solid solution between AsVO43− and PO43−. Like both end members, the intermediate As-vivianites crystallised in the monoclinic system (C2/m space group), and retained the platelet crystal habit of As-free vivianite, even at the highest As(V) substitution. This uniform incorporation of As(V), and its replacement of PO43−, provides a potentially stable sink for arsenic in anoxic soils and sediments, and may have implications in ferruginous early Earth oceans

    Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear?

    Get PDF
    Globally, more than 1000 tonnes of titanium (Ti) is implanted into patients in the form of biomedical devices on an annual basis. Ti is perceived to be ‘biocompatible’ owing to the presence of a robust passive oxide film (approx. 4 nm thick) at the metal surface. However, surface deterioration can lead to the release of Ti ions, and particles can arise as the result of wear and/or corrosion processes. This surface deterioration can result in peri-implant inflammation, leading to the premature loss of the implanted device or the requirement for surgical revision. Soft tissues surrounding commercially pure cranial anchorage devices (bone-anchored hearing aid) were investigated using synchrotron X-ray micro-fluorescence spectroscopy and X-ray absorption near edge structure. Here, we present the first experimental evidence that minimal load-bearing Ti implants, which are not subjected to macroscopic wear processes, can release Ti debris into the surrounding soft tissue. As such debris has been shown to be pro-inflammatory, we propose that such distributions of Ti are likely to effect to the service life of the device

    Redox interactions of Tc(VII), U(VI), and Np(V) with microbially reduced biotite and chlorite

    Get PDF
    Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4 -, UO2 2+, and NpO2 +. When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment

    Understanding the reactivity of CoCrMo-implant wear particles

    Get PDF
    CoCrMo-based metal-on-metal hip implants experienced unexpectedly high failure rates despite the high wear and corrosion resistance of the bulk material. Although they exhibit a lower volumetric wear compared to other implant materials, CoCrMo-based implants produced a significantly larger 'number' of smaller wear particles. CoCrMo is nominally an extremely stable material with high Cr content providing passivity. However, despite the Co:Cr ratio in the original alloy being 2:1; chemical analyses of wear particles from periprosthetic tissue have found the particles to be composed predominately of Cr species, with only trace amounts of Co remaining. Here a correlative spectroscopy and microscopy approach has shown that these particles dissolve via a non-stoichiometric, and geometrically inhomogeneous, mechanism similar to de-alloying. This mechanism is previously unreported for this material and was not apparent in any of the regulatory required tests, suggesting that such tests are insufficiently discriminating

    Automated analysis of XANES: A feasibility study of Au reference compounds

    Get PDF
    With the advent of high-throughput and imaging core level spectroscopies (including X-ray absorption spectroscopy, XAS, as well as electron energy loss spectroscopy, EELS), automated data processing, visualisation and analytics will become a necessity. As a first step towards these objectives we examined the possibilities and limitations of a simple automated XANES peak fitting procedure written in MATLAB, for the parametrisation of XANES features, including ionisation potentials as well as the energies and intensities of electronic transitions. Using a series of Au L3-edge XANES reference spectra we show that most of the relevant information can be captured through a small number of rules applied to constrain the fits. Uncertainty in this strategy arises mostly when the ionisation potential (IP) overlaps with weak electronic transitions or features in the continuum beyond the IP, which can result in ambiguity through multiple equally good fits

    Fabrication, defect chemistry and microstructure of Mn-doped UO2

    Get PDF
    Mn-doped UO2 is under consideration for use as an accident tolerant nuclear fuel. We detail the synthesis of Mn-doped UO2 prepared via a wet co-precipitation method, which was refined to improve the yield of incorporated Mn. To verify the Mn-doped UO2 defect chemistry, X-ray absorption spectroscopy at the Mn K-edge was performed, in addition to X-ray diffraction, Raman spectroscopy and high-energy resolved fluorescence detection X-ray absorption near edge spectroscopy at the U M4-edge. It was established that Mn2+ directly substitutes for U4+ in the UO2 lattice, accompanied by oxygen vacancy (Ov) charge compensation. In contrast to other divalent-element doped UO2 materials, compelling evidence for U5+ in a charge compensating role was not found. This work furthers understanding of the structure and crystal chemistry of Mn-doped UO2, which could show potential advantages as a novel efficient advanced nuclear fuel
    corecore