1,396 research outputs found

    Inter-filament Attractions Narrow the Length Distribution of Actin Filaments

    Full text link
    We show that the exponential length distribution that is typical of actin filaments under physiological conditions dramatically narrows in the presence of (i) crosslinker proteins (ii) polyvalent counterions or (iii) depletion mediated attractions. A simple theoretical model shows that in equilibrium, short-range attractions enhance the tendency of filaments to align parallel to each other, eventually leading to an increase in the average filament length and a decrease in the relative width of the distribution of filament lengths.Comment: 5 pages, 4 figure

    Flexibility, Complexity, and Controllability in Large Scale Systems

    Get PDF
    System structure is a key determinant of system behavior. There is a particularly strong link between a system’s structure and its flexibility – it’s capacity to respond to changes. Often, adding flexibility entails adding complexity. In this paper, we propose measures for a system’s complexity that are complementary to existing flexibility measures. Furthermore, flexibility often comes at the cost of some measure of control over the system’s behavior. We therefore propose a metric for system controllability that is complementary to our flexibility metric

    Analogies Between Complex Systems and Phases of Matter

    Get PDF
    The behavior of a complex system in a changing environment is strongly affected by the system's architecture. We present an analogy between the major phases of matter (solid, liquid, gas) and three major generic architectures of complex systems: tree structures, layered structures and grid networks. This analogy is realized using a graph-based formalism, with nodes and edges in a given configuration. Solid materials are akin to tree structures, especially when we consider that most solids actually have cracks. Solids with cracks between their components can be modeled by nodes (representing each component) and their interconnection, leading to a tree structured hierarchy. Gases made up of molecules can be modeled by nodes (the molecules) with local interconnections representing nearby molecules in space, thus forming a grid network. Liquids can form layers as in a mixture of oil and water. We represent this by connections that are densely horizontal within layers as well as sparsely vertical between layers. A key issue for complex systems is the ease by which they may be changed, which we call the system’s flexibility. Our definition of flexibility indicates that tree structures, like solids, are relatively inflexible and that grid networks, like gases, are extremely flexible, possibly leading to loss of control and chaotic behavior. Like liquids, layered systems are intermediate in flexibility and controllability. Solids, even with cracks, are relatively difficult to modify, whereas gases change internal form so quickly that they can only be constrained; not controlled. Liquids are intermediate in their ability to change form internally. Just as heating solids can lead to liquids, and heating liquids can result in gases, we shall present transformations in the interconnection structure of systems, analogous to heating, that change tree structures into layered ones and layered structures into networks

    Modeling neural dynamics during speech production using a state space variational autoencoder

    Full text link
    Characterizing the neural encoding of behavior remains a challenging task in many research areas due in part to complex and noisy spatiotemporal dynamics of evoked brain activity. An important aspect of modeling these neural encodings involves separation of robust, behaviorally relevant signals from background activity, which often contains signals from irrelevant brain processes and decaying information from previous behavioral events. To achieve this separation, we develop a two-branch State Space Variational AutoEncoder (SSVAE) model to individually describe the instantaneous evoked foreground signals and the context-dependent background signals. We modeled the spontaneous speech-evoked brain dynamics using smoothed Gaussian mixture models. By applying the proposed SSVAE model to track ECoG dynamics in one participant over multiple hours, we find that the model can predict speech-related dynamics more accurately than other latent factor inference algorithms. Our results demonstrate that separately modeling the instantaneous speech-evoked and slow context-dependent brain dynamics can enhance tracking performance, which has important implications for the development of advanced neural encoding and decoding models in various neuroscience sub-disciplines.Comment: 5 page

    Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    Get PDF
    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated

    Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model

    Get PDF
    The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station

    Reconstruction of the Evolutionary History of Saccharomyces cerevisiae x S. kudriavzevii Hybrids Based on Multilocus Sequence Analysis

    Get PDF
    In recent years, interspecific hybridization and introgression are increasingly recognized as significant events in the evolution of Saccharomyces yeasts. These mechanisms have probably been involved in the origin of novel yeast genotypes and phenotypes, which in due course were to colonize and predominate in the new fermentative environments created by human manipulation. The particular conditions in which hybrids arose are still unknown, as well as the number of possible hybridization events that generated the whole set of natural hybrids described in the literature during recent years. In this study, we could infer at least six different hybridization events that originated a set of 26 S. cerevisiae x S. kudriavzevii hybrids isolated from both fermentative and non-fermentative environments. Different wine S. cerevisiae strains and European S. kudriavzevii strains were probably involved in the hybridization events according to gene sequence information, as well as from previous data on their genome composition and ploidy. Finally, we postulate that these hybrids may have originated after the introduction of vine growing and winemaking practices by the Romans to the present Northern vine-growing limits and spread during the expansion of improved viticulture and enology practices that occurred during the Late Middle Ages

    Impact of International Trade on Economic Growth in Nigeria

    Get PDF
    Using data from the World Development Indicator (WDI) and the Central Bank of Nigeria (CBN) Statistical Bulletin, this article analyzed the impact of exports, imports, the currency rate, and inflation on Nigeria’s economic development between 1981 and 2020. The research employed Autoregressive Distributed Lag (ARDL) bound testing methodology. The variables utilized in the study were evaluated for stationarity using the Augmented Dickey-Fuller and Philip Perron test, and the bound testing process was applied to the equations. The lag of variables test can be performed to determine the relationship between the variables. The outcome demonstrated that variables are stationary at first difference. Economy growth, exports and imports, exchange rate, and Inflation all exhibit long-term cointegration, as determined by a cointegration test. Export positively impacted on growth while inflation and exchange rate were found to be negatively affecting growth in Nigeria. The article indicates that there is a beneficial association between international commerce and economic growth and supports the policy of encouraging exports and expanding Nigeria’s presence on global markets
    • …
    corecore