177 research outputs found
Translating neuroscience: When is the use of clickers effective for student learning?
Objective: Teaching large content heavy classes presents a challenge to faculty in any discipline.In nursing education, particularly pharmacotherapeutics, student learning is critical to patient safety.Therefore, effective teaching practices are a must.But, there is a lack of education literature that connects the neuroscience of why a specific method such as using the technology of personal response systems (PRS) contributes to student learning.This study discusses the use of action research to evaluate the effectiveness of the use of personal response systems (PRS) or “clickers” in an undergraduate nursing pharmacology course, using knowledge of neuroscience to interpret the results.
Methods:Action research was used to apply Neuro-semantic Language Learning Theory to the use of clickers in a nursing pharmatherapeutics course.Action research design allowed for the continuity of assessment and reflection by the faculty.
Results:Outcomes were measures quantitatively using ATI (Assessment Technologies Institute) test scores pre- and post-intervention.ATI scores improved with the use of clickers.Qualitative student comments indicated satisfaction with the use of clickers to improve learning.Neuroscience and learning theory are used to explain the results of the study.
Conclusion:Clickers by themselves do not necessarily create better learning, but thoughtful, purposeful integration of the technology, using techniques based on neuroscience elicit higher order thinking and provides deeper conceptual learning
‘The Life That We Don't Want’: Using Participatory Video in Researching Violence
This article reports on the use of participatory video as a research tool for working in violent contexts. The research asked how people living in poor areas of Rio de Janeiro, Brazil can build a bridge between violence and citizenship through participatory social action. Working in violent favelas and housing estates, the process involved creating participatory discussion groups drawn from different segments of the community. Participatory video was one of several tools used in the research process. The main contribution of participatory video was not in generating empirical findings, but in challenging patterns of power and control
Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes
<p>Abstract</p> <p>Background</p> <p>In most cells, the centriolar component of the centrosome can function as a basal body supporting the formation of a primary cilium, a non-motile sensory organelle that monitors information from the extracellular matrix and relays stimuli into the cell via associated signaling pathways. Defects in the formation and function of primary cilia underlie multiple human diseases and are hallmarks of malignancy. The RNA silencing pathway is involved in the post-transcriptional silencing of > 50% of mRNA that occurs within GW/P bodies. GW/P bodies are found throughout the cytoplasm and previously published live cell imaging data suggested that in a malignant cell type (U2OS), two GW/P bodies reside at the centrosome during interphase. This led us to investigate if a similar relationship exists in primary cells and if the inhibition of the miRNA pathway impairs primary cilium formation.</p> <p>Results</p> <p>Two GW/P bodies as marked by GW182 and hAgo2 colocalized to the basal body of primary human astrocytes as well as human synoviocytes during interphase and specifically with the distal end of the basal body in the pericentriolar region. Since it is technically challenging to examine the two centrosomal GW/P bodies in isolation, we investigated the potential relationship between the global population of GW/P bodies and primary ciliogenesis. Astrocytes were transfected with siRNA directed to GW182 and hAgo2 and unlike control astrocytes, a primary cilium was no longer associated with the centrosome as detected in indirect immunofluorescence assays. Ultrastructural analysis of siRNA transfected astrocytes revealed that knock down of GW182, hAgo2, Drosha and DGCR8 mRNA did not affect the appearance of the earliest stage of ciliogenesis but did prevent the formation and elongation of the ciliary axoneme.</p> <p>Conclusions</p> <p>This study confirms and extends a previously published report that GW/P bodies reside at the centrosome in U2OS cells and documents that GW/P bodies are resident at the centrosome in diverse non-malignant cells. Further, our study demonstrates that repression of key effector proteins in the post-transcriptional miRNA pathway impairs primary cilium formation.</p
Design of dual ligands using excessive pharmacophore query alignment : from 7th German Conference on Chemoinformatics: 25 CIC-Workshop Goslar, Germany, 6 - 8 November 2011
Dual- or multi-target ligands have gained increased attention in the past years due to several advantages, including more simple pharmacokinetic and phamarcodynamic properties compared to a combined application of several drugs. Furthermore multi-target ligands often possess improved efficacy. We present a new approach for the discovery of dual-target ligands using aligned pharmacophore models combined with a shape-based scoring. Starting with two sets of known active compounds for each target, a number of different pharmacophore models is generated and subjected to pairwise graph-based alignment using the Kabsch-Algorithm. Since a compound may be able to bind to different targets in different conformations, the algorithm aligns pairs of pharmacophore models sharing the same features which are not necessarily at the exactly same spatial distance. Using the aligned models, a pharmacophore search on a multi-conformation-database is performed to find compounds matching both models. The potentially “dual” ligands are scored by a shape-based comparison with the known active molecules using ShaEP.
Using this approach, we performed a prospective fragment-based virtual screening for dual 5-LO/sEH inhibitors. Both enzymes play an important role in the arachidonic acid cascade and are involved in inflammatory processes, pain, cardiovascular diseases and allergic reactions. Beside several new selective inhibitors we were able to find a compound inhibiting both enzymes in low micromolar concentrations. The results indicate that the idea of aligned pharmacophore models can be successfully employed for the discovery of dual-target ligands
Molecular profiling of soft-tissue sarcomas with FoundationOne® Heme identifies potential targets for sarcoma therapy: a single-centre experience
Background: Molecular diagnosis has become an established tool in the characterisation of adult soft-tissue sarcomas (STS). FoundationOne ® Heme analyses somatic gene alterations in sarcomas via DNA and RNA-hotspot sequencing of tumour-associated genes. Methods: We evaluated FoundationOne ® Heme testing in 81 localised STS including 35 translocation-associated and 46 complex-karyotyped cases from a single institution. Results: Although FoundationOne ® Heme achieved broad patient coverage and identified at least five genetic alterations in each sample, the sensitivity for fusion detection was rather low, at 42.4%. Nevertheless, potential targets for STS treatment were detected using the FoundationOne ® Heme assay: complex-karyotyped sarcomas frequently displayed copy-number alterations of common tumour-suppressor genes, particularly deletions in TP53 , NF1 , ATRX , and CDKN2A . A subset of myxofibrosarcomas (MFS) was amplified for HGF ( n = 3) and MET ( n = 1). PIK3CA was mutated in 7/15 cases of myxoid liposarcoma (MLS; 46.7%). Epigenetic regulators (e.g. MLL2 and MLL3 ) were frequently mutated. Conclusions: In summary, FoundationOne ® Heme detected a broad range of genetic alterations and potential therapeutic targets in STS (e.g. HGF/MET in a subset of MFS, or PIK3CA in MLS). The assay’s sensitivity for fusion detection was low in our sample and needs to be re-evaluated in a larger cohort
Design of dual ligands using excessive pharmacophore query alignment
Dual- or multi-target ligands have gained increased attention in the past years due to several advantages, including more simple pharmacokinetic and phamarcodynamic properties compared to a combined application of several drugs. Furthermore multi-target ligands often possess improved efficacy. We present a new approach for the discovery of dual-target ligands using aligned pharmacophore models combined with a shape-based scoring. Starting with two sets of known active compounds for each target, a number of different pharmacophore models is generated and subjected to pairwise graph-based alignment using the Kabsch-Algorithm. Since a compound may be able to bind to different targets in different conformations, the algorithm aligns pairs of pharmacophore models sharing the same features which are not necessarily at the exactly same spatial distance. Using the aligned models, a pharmacophore search on a multi-conformation-database is performed to find compounds matching both models. The potentially “dual” ligands are scored by a shape-based comparison with the known active molecules using ShaEP.
Using this approach, we performed a prospective fragment-based virtual screening for dual 5-LO/sEH inhibitors. Both enzymes play an important role in the arachidonic acid cascade and are involved in inflammatory processes, pain, cardiovascular diseases and allergic reactions. Beside several new selective inhibitors we were able to find a compound inhibiting both enzymes in low micromolar concentrations. The results indicate that the idea of aligned pharmacophore models can be successfully employed for the discovery of dual-target ligands
LUMINOS-102: Lerapolturev with and without α-PD- 1 in unresectable α-PD- 1 refractory melanoma
Lerapolturev (lera, formerly PVSRIPO) is a novel poliovirus based intratumoral immunotherapy that infects both cancer cells and antigen-presenting cells (APCs) via CD155, the poliovirus receptor. Lera has direct anticancer effects while also generating type I/III interferon-dominated inflammation and anti-tumor T-cell priming and activation via infection of local APCs. LUMINOS-102 (NCT04577807) is a multi-center, open-label, two-arm randomized Phase 2 study investigating the efficacy and safety of lera ± α-PD- 1 in patients with unresectable melanoma who failed prior α-PD- 1 therapy. Cross-over to the α-PD- 1 arm is permitted after progression, PR for ≥6 mo or 6 mo on treatment with SD. The maximum initial lera dose was 6x108 TCID50 /visit every 3 or 4 weeks (Q3/4 W). As of March 2022, the maximum lera dose was increased to 1.6 x 109 TCID50/visit, every week (QW) for 7 weeks (induction), followed by Q3/4 W dosing (maintenance). As of 20-Jun- 2022, 21 participants (10 male, 11 female, median 64 yrs) received lera (n = 14 at initial dose, Q3/4 W; n = 4 at increased dose, Q3/4 W; n = 3 at increased dose, QW) ± αPD-1. Five patients are currently on treatment. With the initial regimen, no objective responses and a CBR of 7% were observed. However, with the higher dose regimen, 1 complete response and a CBR of 71% (5/7) has been observed. Two of 4 participants with stable disease have evidence of response (1 with resolution of uninjected lung metastasis, 1 with decreased PET signal in injected and uninjected lesions receiving combination therapy). The only treatment related AE in \u3e1 pt was fatigue (19%, all grade 1 or 2). No dose-limiting toxicities or treatment-related SAEs were reported. Multiplex-IF analysis of on-treatment tumor biopsies will be presented. Lera ± αPD-1 is well tolerated, with early signs of efficacy at the higher dose level. Enrollment and randomization are ongoing
The MicroRNA and MessengerRNA Profile of the RNA-Induced Silencing Complex in Human Primary Astrocyte and Astrocytoma Cells
GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies
- …