59 research outputs found

    CoMaLit - II. The scaling relation between mass and Sunyaev-Zel'dovich signal for Planck selected galaxy clusters

    Get PDF
    We discuss the scaling relation between mass and integrated Compton parameter of a sample of galaxy clusters from the all-sky {\it Planck} Sunyaev-Zel'dovich catalogue. Masses were measured with either weak lensing, caustics techniques, or assuming hydrostatic equilibrium. The retrieved Y500Y_{500}-M500M_{500} relation does not strongly depend on the calibration sample. We found a slope of 1.4-1.9, in agreement with self-similar predictions, with an intrinsic scatter of 20±1020\pm10 per cent. The absolute calibration of the relation can not be ascertained due to systematic differences of ∌\sim20-40 per cent in mass estimates reported by distinct groups. Due to the scatter, the slope of the conditional scaling relation, to be used in cosmological studies of number counts, is shallower, ∌\sim1.1-1.6. The regression methods employed account for intrinsic scatter in the mass measurements too. We found that Planck mass estimates suffer from a mass dependent bias.Comment: 14 pages, 7 figures; v2: 17 pages, 11 figures; MNRAS in press, results unchanged; extended discussion of the Planck calibration sample; added discussion of conditional vs symmetric scaling relations and of mixture of Gaussian functions as distribution of the independent variable; products from the CoMaLit series at http://pico.bo.astro.it/~sereno/CoMaLi

    Magnification bias as a novel probe for primordial magnetic fields

    Full text link
    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 0.0005 nG for values of the PMF power spectral index ~0.Comment: 21 pages, 9 figures; published on JCA

    Inclusive Constraints on Unified Dark Matter Models from Future Large-Scale Surveys

    Full text link
    In the very last years, cosmological models where the properties of the dark components of the Universe - dark matter and dark energy - are accounted for by a single "dark fluid" have drawn increasing attention and interest. Amongst many proposals, Unified Dark Matter (UDM) cosmologies are promising candidates as effective theories. In these models, a scalar field with a non-canonical kinetic term in its Lagrangian mimics both the accelerated expansion of the Universe at late times and the clustering properties of the large-scale structure of the cosmos. However, UDM models also present peculiar behaviours, the most interesting one being the fact that the perturbations in the dark-matter component of the scalar field do have a non-negligible speed of sound. This gives rise to an effective Jeans scale for the Newtonian potential, below which the dark fluid does not cluster any more. This implies a growth of structures fairly different from that of the concordance LCDM model. In this paper, we demonstrate that forthcoming large-scale surveys will be able to discriminate between viable UDM models and LCDM to a good degree of accuracy. To this purpose, the planned Euclid satellite will be a powerful tool, since it will provide very accurate data on galaxy clustering and the weak lensing effect of cosmic shear. Finally, we also exploit the constraining power of the ongoing CMB Planck experiment. Although our approach is the most conservative, with the inclusion of only well-understood, linear dynamics, in the end we also show what could be done if some amount of non-linear information were included.Comment: 22 pages, 4 figures, 2 table

    The mass-concentration relation in lensing clusters: the role of statistical biases and selection effects

    Get PDF
    The relation between mass and concentration of galaxy clusters traces their formation and evolution. Massive lensing clusters were observed to be over-concentrated and following a steep scaling in tension with predictions from the concordance Λ\LambdaCDM paradigm. We critically revise the relation in the CLASH, the SGAS, the LOCUSS, and the high-redshift samples of weak lensing clusters. Measurements of mass and concentration are anti-correlated, which can bias the observed relation towards steeper values. We corrected for this bias and compared the measured relation to theoretical predictions accounting for halo triaxiality, adiabatic contraction of the halo, presence of a dominant BCG and, mostly, selection effects in the observed sample. The normalisation, the slope and the scatter of the expected relation are strongly sample-dependent. For the considered samples, the predicted slope is much steeper than that of the underlying relation characterising dark-matter only clusters. We found that the correction for statistical and selection biases in observed relations mostly solve the tension with the Λ\LambdaCDM model.Comment: 13 pages, 3 figures; v2: 14 pages, minor changes, in press on MNRA

    Mass and Concentration estimates from Weak and Strong Gravitational Lensing: a Systematic Study

    Full text link
    We study how well halo properties of galaxy clusters, like mass and concentration, are recovered using lensing data. In order to generate a large sample of systems at different redshifts we use the code MOKA. We measure halo mass and concentration using weak lensing data alone (WL), fitting to an NFW profile the reduced tangential shear profile, or by combining weak and strong lensing data, by adding information about the size of the Einstein radius (WL+SL). For different redshifts, we measure the mass and the concentration biases and find that these are mainly caused by the random orientation of the halo ellipsoid with respect to the line-of-sight. Since our simulations account for the presence of a bright central galaxy, we perform mass and concentration measurements using a generalized NFW profile which allows for a free inner slope. This reduces both the mass and the concentration biases. We discuss how the mass function and the concentration mass relation change when using WL and WL+SL estimates. We investigate how selection effects impact the measured concentration-mass relation showing that strong lens clusters may have a concentration 20-30% higher than the average, at fixed mass, considering also the particular case of strong lensing selected samples of relaxed clusters. Finally, we notice that selecting a sample of relaxed galaxy clusters, as is done in some cluster surveys, explain the concentration-mass relation biases.Comment: (1) DIFA-UniBO, (2) INAF-OABo, (3) INFN-BO, (4) JPL-Pasadena 18 pages, 19 figures - accepted for publication by MNRAS, two figures added for comparison with SGAS-SDSS and LoCuSS cluster

    Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South

    Get PDF
    We present an analysis of the evolution of galaxy clustering in the redshift interval 0<z<4.5 in the HDF-S. The HST optical data are combined with infrared ISAAC/VLT observations, and photometric redshifts are used for all the galaxies brighter than I_AB<27.5. The clustering signal is obtained in different redshift bins using two different approaches: a standard one, which uses the best redshift estimate of each object, and a second one, which takes into account the redshift probability function of each object. This second method makes it possible to improve the information in the redshift intervals where contamination from objects with insecure redshifts is important. With both methods, we find that the clustering strength up to z~3.5 in the HDF-S is consistent with the previous results in the HDF-N. While at redshift lower than z~1 the HDF galaxy population is un/anti-biased (b<1) with respect to the underlying dark matter, at high redshift the bias increases up to b~2-3, depending on the cosmological model. These results support previous claims that, at high redshift, galaxies are preferentially located in massive haloes, as predicted by the biased galaxy formation scenario. The impact of cosmic errors on our analyses has been quantified, showing that errors in the clustering measurements in the HDF surveys are indeed dominated by shot-noise in most regimes. Future observations with instruments like the ACS on HST will improve the S/N by at least a factor of two and more detailed analyses of the errors will be required. In fact, pure shot-noise will give a smaller contribution with respect to other sources of errors, such as finite volume effects or non-Poissonian discreteness effects.Comment: 17 pages Latex, with 12 PostScript figures, Accepted for publication in MNRA

    Neglecting Primordial non-Gaussianity Threatens Future Cosmological Experiment Accuracy

    Get PDF
    Future galaxy redshift surveys aim at probing the clustering of the cosmic large-scale structure with unprecedented accuracy, thus complementing cosmic microwave background experiments in the quest to deliver the most precise and accurate picture ever of our Universe. Analyses of such measurements are usually performed within the context of the so-called vanilla LCDM model - the six-parameter phenomenological model which, for instance, emerges from best fits against the recent data obtained by the Planck satellite. Here, we show that such an approach is prone to subtle systematics when the Gaussianity of primordial fluctuations is concerned. In particular, we demonstrate that, if we neglect even a tiny amount of primordial non-Gaussianity - fully consistent with current limits - we shall introduce spurious biases in the reconstruction of cosmological parameters. This is a serious issue that must be properly accounted for in view of accurate (as well as precise) cosmology.Comment: 8 pages, 4 figures, 2 table

    The epoch of structure formation in blue mixed dark matter models

    Full text link
    Recent data on the high--redshift abundance of damped Lyα\alpha systems are compared with theoretical predictions for `blue' (i.e. n>1n>1) Mixed Dark Matter models. The results show that decreasing the hot component fraction ΩΜ\Omega_\nu and/or increasing the primordial spectral index nn implies an earlier epoch of cosmic structure formation. However, we also show that varying ΩΜ\Omega_\nu and nn in these directions makes the models barely consistent with the observed abundance of galaxy clusters. Therefore, requiring at the same time observational constraints on damped Lyα\alpha systems and cluster abundance to be satisfied represents a challenge for the Mixed Dark Matter class of models.Comment: Uuencoded compressed tar file containing 6 page TeX file and 4 postscript figures. Uses mn.sty and psfig.sty. To appear in MNRAS. Main change: inclusion of a discussion of the constraints coming from the cluster abundance

    Seeking the Local Convergence Depth. The Abell Cluster Dipole Flow to 200 Mpc/h

    Get PDF
    We have obtained new Tully-Fisher (TF) peculiar velocity measurements for 52 Abell galaxy clusters distributed throughout the sky between ~ 50 and 200 Mpc/h.The measurements are based on I band photometry and optical rotation curves for a sample of 522 spiral galaxies, from which an accurate TF template relation has been constructed. Individual cluster TF relations are referred to the template to compute cluster peculiar motions. The reflex motion of the Local Group of galaxies is measured with respect to the reference frame defined by our cluster sample and the distant portion of the Giovanelli et al. (1998) cluster set. We find the Local Group motion in this frame to be 565+/-113 km/s in the direction (l,b)=(267,26)+/-10 when peculiar velocities are weighted according to their errors. After optimizing the dipole calculation to sample equal volumes equally, the vector is 509+/-195 km/s towards (255,33)+/-22. Both solutions agree, to within 1-sigma or better, with the Local Group motion as inferred from the cosmic microwave background (CMB) dipole. Thus, the cluster sample as a whole moves slowly in the CMB reference frame, its bulk flow being at most 200 km/s.Comment: 11 pages, uses AAS LaTeX; to appear in the Astrophysical Journal Letter
    • 

    corecore