In this paper we investigate magnetic fields generated in the early Universe.
These fields are important candidates at explaining the origin of astrophysical
magnetism observed in galaxies and galaxy clusters, whose genesis is still by
and large unclear. Compared to the standard inflationary power spectrum,
intermediate to small scales would experience further substantial matter
clustering, were a cosmological magnetic field present prior to recombination.
As a consequence, the bias and redshift distribution of galaxies would also be
modified. Hitherto, primordial magnetic fields (PMFs) have been tested and
constrained with a number of cosmological observables, e.g. the cosmic
microwave background radiation, galaxy clustering and, more recently, weak
gravitational lensing. Here, we explore the constraining potential of the
density fluctuation bias induced by gravitational lensing magnification onto
the galaxy-galaxy angular power spectrum. Such an effect is known as
magnification bias. Compared to the usual galaxy clustering approach,
magnification bias helps in lifting the pathological degeneracy present amongst
power spectrum normalisation and galaxy bias. This is because magnification
bias cross-correlates galaxy number density fluctuations of nearby objects with
weak lensing distortions of high-redshift sources. Thus, it takes advantage of
the gravitational deflection of light, which is insensitive to galaxy bias but
powerful in constraining the density fluctuation amplitude. To scrutinise the
potentiality of this method, we adopt a deep and wide-field spectroscopic
galaxy survey. We show that magnification bias does contain important
information on primordial magnetism, which will be useful in combination with
galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL
amplitudes of PMFs larger than 0.0005 nG for values of the PMF power spectral
index ~0.Comment: 21 pages, 9 figures; published on JCA