1,142 research outputs found
When should a child with an undescended testis be referred to a urologist?
Infants with an undescended testis should be referred between ages 6 and 15 months, since almost all who experience spontaneous descent do so by 6 months (strength of recommendation [SOR]: A, extrapolation from cohort studies). The incidence of germ cell aplasia in undescended testes begins to rise at 15 months (SOR: C, extrapolation of observational studies); however, evidence is inconclusive that orchiopexy at this age results in higher rates of paternity success (SOR: B, retrospective cohort study). Orchiopexy may allow earlier detection of testicular tumors (SOR: C, expert opinion), but it has not been shown to reduce the risk of testicular cancer (SOR: B, retrospective cohort study) or improve 5-year survival rates for those patients diagnosed with testicular cancer (SOR: B, retrospective cohort study)
Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue
E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and
quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining
E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during
disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53
or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments
ATP-binding cassette family C member 1 constrains metabolic responses to high-fat diet in male mice
Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.</p
Fluid Optimisation in Emergency Laparotomy (FLO-ELA) Trial: study protocol for a multi-centre randomised trial of cardiac output-guided fluid therapy compared to usual care in patients undergoing major emergency gastrointestinal surgery
INTRODUCTION: Postoperative morbidity and mortality in patients undergoing major emergency gastrointestinal surgery are a major burden on healthcare systems. Optimal management of perioperative intravenous fluids may reduce mortality rates and improve outcomes from surgery. Previous small trials of cardiac-output guided haemodynamic therapy algorithms in patients undergoing gastrointestinal surgery have suggested this intervention results in reduced complications and a modest reduction in mortality. However, this existing evidence is based mainly on elective (planned) surgery, with little evaluation in the emergency setting. There are fundamental clinical and pathophysiological differences between the planned and emergency surgical setting which may influence the effects of this intervention. A large definitive trial in emergency surgery is needed to confirm or refute the potential benefits observed in elective surgery and to inform widespread clinical practice. METHODS: The FLO-ELA trial is a multi-centre, parallel-group, open, randomised controlled trial. 3138 patients aged 50 and over undergoing major emergency gastrointestinal surgery will be randomly allocated in a 1:1 ratio using minimisation to minimally invasive cardiac output monitoring to guide protocolised administration of intra-venous fluid, or usual care without cardiac output monitoring. The trial intervention will be carried out during surgery and for up to 6Â h postoperatively. The trial is funded through an efficient design call by the National Institute for Health and Care Research Health Technology Assessment (NIHR HTA) programme and uses existing routinely collected datasets for the majority of data collection. The primary outcome is the number of days alive and out of hospital within 90Â days of randomisation. Participants and those delivering the intervention will not be blinded to treatment allocation. Participant recruitment started in September 2017 with a 1-year internal pilot phase and is ongoing at the time of publication. DISCUSSION: This will be the largest contemporary randomised trial examining the effectiveness of perioperative cardiac output-guided haemodynamic therapy in patients undergoing major emergency gastrointestinal surgery. The multi-centre design and broad inclusion criteria support the external validity of the trial. Although the clinical teams delivering the trial interventions will not be blinded, significant trial outcome measures are objective and not subject to detection bias. TRIAL REGISTRATION: ISRCTN 14729158. Registered on 02 May 2017
ATP-binding cassette family C member 1 constrains metabolic responses to high-fat diet in male mice
Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.</p
AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting
exoplanets based on searching four years of Kepler time series photometry (Data
Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet
candidates with periods between 0.25 and 632 days. Of these candidates, 219 are
new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and
ten high-reliability, terrestrial-size, habitable zone candidates. This catalog
was created using a tool called the Robovetter which automatically vets the
DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also
vetted simulated data sets and measured how well it was able to separate TCEs
caused by noise from those caused by low signal-to-noise transits. We discusses
the Robovetter and the metrics it uses to sort TCEs. For orbital periods less
than 100 days the Robovetter completeness (the fraction of simulated transits
that are determined to be planet candidates) across all observed stars is
greater than 85%. For the same period range, the catalog reliability (the
fraction of candidates that are not due to instrumental or stellar noise) is
greater than 98%. However, for low signal-to-noise candidates between 200 and
500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the
catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the
simulated data used to characterize this catalog are available at the NASA
Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal
Supplement Serie
Progress report no. 7
Statement of responsibility on title-page reads: editor: M.J. Driscoll; contributors: D.C. Aldrich, M.J. Driscoll, O.K. Kadiroglu, S. Keyvan, H.U.R. Khan, D.D. Lanning, R. Morton, J. Pasztor, T.J. Reckart, A.A. Salehi, J.I. Shin, A.T. Supple, D.J. Wargo, and S.S. WuIncludes bibliographical referencesProgress report; September 30, 1976U.S. Atomic Energy Commission contracts: E(11-1) 225
Dual bronchodilators in Bronchiectasis study (DIBS): protocol for a pragmatic, multicentre, placebo-controlled, three-arm, double-blinded, randomised controlled trial studying bronchodilators in preventing exacerbations of bronchiectasis
INTRODUCTION: Bronchiectasis is a long-term lung condition, with dilated bronchi, chronic inflammation, chronic infection and acute exacerbations. Recurrent exacerbations are associated with poorer clinical outcomes such as increased severity of lung disease, further exacerbations, hospitalisations, reduced quality of life and increased risk of death. Despite an increasing prevalence of bronchiectasis, there is a critical lack of high-quality studies into the disease and no treatments specifically approved for its treatment. This trial aims to establish whether inhaled dual bronchodilators (long acting beta agonist (LABA) and long acting muscarinic antagonist (LAMA)) taken as either a stand-alone therapy or in combination with inhaled corticosteroid (ICS) reduce the number of exacerbations of bronchiectasis requiring treatment with antibiotics during a 12 month treatment period. METHODS: This is a multicentre, pragmatic, double-blind, randomised controlled trial, incorporating an internal pilot and embedded economic evaluation. 600 adult patients (≥18 years) with CT confirmed bronchiectasis will be recruited and randomised to either inhaled dual therapy (LABA+LAMA), triple therapy (LABA+LAMA+ICS) or matched placebo, in a 2:2:1 ratio (respectively). The primary outcome is the number of protocol defined exacerbations requiring treatment with antibiotics during the 12 month treatment period. ETHICS AND DISSEMINATION: Favourable ethical opinion was received from the North East-Newcastle and North Tyneside 2 Research Ethics Committee (reference: 21/NE/0020). Results will be disseminated in peer-reviewed publications, at national and international conferences, in the NIHR Health Technology Assessments journal and to participants and the public (using lay language). TRIAL REGISTRATION NUMBER: ISRCTN15988757
Recommended from our members
Cumulative incidence estimates for solid tumors after HCT in the CIBMTR and California Cancer Registry
AbstractCompared with the general population, hematopoietic cell transplantation (HCT) survivors are at elevated risk for developing solid subsequent neoplasms (SNs). The Center for International Blood and Marrow Transplant Research (CIBMTR) is a key resource for quantifying solid SN incidence following HCT, but the completeness of SN ascertainment is uncertain. Within a cohort of 18 450 CIBMTR patients linked to the California Cancer Registry (CCR), we evaluated the completeness of solid SN data reported to the CIBMTR from 1991 to 2018 to understand the implications of using CIBMTR data alone or combined with CCR data to quantify the burden of solid SNs after HCT. We estimated the cumulative incidence of developing a solid SN, accounting for the competing risk of death. Within the cohort, solid SNs were reported among 724 patients; 15.6% of these patients had an SN reported by CIBMTR only, 36.9% by CCR only, and 47.5% by both. The corresponding cumulative incidence of developing a solid SN at 10 years following a first HCT was 4.0% (95% confidence interval [CI], 3.5-4.4) according to CIBMTR data only, 5.3% (95% CI, 4.9-5.9) according to CCR data only, and 6.3% (95% CI, 5.7-6.8) according to both sources combined. The patterns were similar for allogeneic and autologous HCT recipients. Linking detailed HCT information from CIBMTR with comprehensive SN data from cancer registries provides an opportunity to optimize SN ascertainment for informing follow-up care practices and evaluating risk factors in the growing population of HCT survivors
- …