55 research outputs found

    Anatomy of the Third-Party Web Tracking Ecosystem

    Full text link
    The presence of third-party tracking on websites has become customary. However, our understanding of the third-party ecosystem is still very rudimentary. We examine third-party trackers from a geographical perspective, observing the third-party tracking ecosystem from 29 countries across the globe. When examining the data by region (North America, South America, Europe, East Asia, Middle East, and Oceania), we observe significant geographical variation between regions and countries within regions. We find trackers that focus on specific regions and countries, and some that are hosted in countries outside their expected target tracking domain. Given the differences in regulatory regimes between jurisdictions, we believe this analysis sheds light on the geographical properties of this ecosystem and on the problems that these may pose to our ability to track and manage the different data silos that now store personal data about us all

    From Codes to Patterns: Designing Interactive Decoration for Tableware

    Full text link
    ABSTRACT We explore the idea of making aesthetic decorative patterns that contain multiple visual codes. We chart an iterative collaboration with ceramic designers and a restaurant to refine a recognition technology to work reliably on ceramics, produce a pattern book of designs, and prototype sets of tableware and a mobile app to enhance a dining experience. We document how the designers learned to work with and creatively exploit the technology, enriching their patterns with embellishments and backgrounds and developing strategies for embedding codes into complex designs. We discuss the potential and challenges of interacting with such patterns. We argue for a transition from designing ‘codes to patterns’ that reflects the skills of designers alongside the development of new technologies

    Understanding food consumption lifecycles using wearable cameras

    Get PDF
    Application of design in HCI is a common approach to engendering behavioural change to address important challenges such as sustainability. Encouraging such change requires an understanding of current motivations and behaviours in the domain in question. In this paper, we describe use of wearable cameras to study motivations and behaviours around food consumption by focusing on two contrasting cultures, Malaysia and the UK. Our findings highlight the potential of wearable cameras to enhance knowledge of food consumption practices and identify where and how some digital interventions might be appropriate to change food behaviour. This includes appealing to people’s motivations behind food consumption and capitalising on existing practices such as gifting of food and social meals. We propose a food consumption lifecycle as a framework to understand and design human–food interaction. The use of wearable cameras enabled us to capture a high-level overview of spatially distributed food-related practices and understand food behaviours in greater depth.This work was co-funded by Horizon Digital Economy Research Institute, UK, and Crops for the Future, Malaysia.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00779-015-0871-

    Biological Activity of CXCL8 Forms Generated by Alternative Cleavage of the Signal Peptide or by Aminopeptidase-Mediated Truncation

    Get PDF
    Posttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH(2)-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others.status: publishe

    Herschel -ATLAS: Extragalactic number counts from 250 to 500 microns

    Get PDF
    Aims. The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 μm when completed, reaching flux limits (5σ) from 32 to 145 mJy. We here present galaxy number counts obtained for SPIRE observations of the first ~14 sq. deg. observed at 250, 350 and 500 μm. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100–200 mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift

    A pair of TESS planets spanning the radius valley around the nearby mid-M dwarf LTT 3780

    Get PDF
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V=13.07V=13.07, Ks=8.204K_s=8.204, RsR_s=0.374 R_{\odot}, MsM_s=0.401 M_{\odot}, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of Pb=0.77P_b=0.77 days, Pc=12.25P_c=12.25 days and sizes rp,b=1.33±0.07r_{p,b}=1.33\pm 0.07 R_{\oplus}, rp,c=2.30±0.16r_{p,c}=2.30\pm 0.16 R_{\oplus}, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses of mp,b=2.620.46+0.48m_{p,b}=2.62^{+0.48}_{-0.46} M_{\oplus} and mp,c=8.61.3+1.6m_{p,c}=8.6^{+1.6}_{-1.3} M_{\oplus}, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.Comment: Accepted to AJ. 8 figures, 6 tables. CSV file of the RV measurements (i.e. Table 2) are included in the source cod

    An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141

    Get PDF
    Ultra-short period (USP) planets are a class of low mass planets with periods shorter than one day. Their origin is still unknown, with photo-evaporation of mini-Neptunes and in-situ formation being the most credited hypotheses. Formation scenarios differ radically in the predicted composition of USP planets, it is therefore extremely important to increase the still limited sample of USP planets with precise and accurate mass and density measurements. We report here the characterization of an USP planet with a period of 0.28 days around K2-141 (EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration. We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with the HARPS-N spectrograph for mass measurements. For K2-141b we thus inferred a radius of 1.51±0.05 R1.51\pm0.05~R_\oplus and a mass of 5.08±0.41 M5.08\pm0.41~M_\oplus, consistent with a rocky composition and lack of a thick atmosphere. K2-141c is likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV dataset, we were not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of 0.30±0.060.30 \pm 0.06 in the Kepler bandpass, or by thermal emission from the surface of the planet at \sim3000K. Only follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.Comment: 16 pages, 10 figures., accepted for publication in A
    corecore