38 research outputs found

    Bayesian model choice in cumulative link ordinal regression models

    Get PDF
    The use of the proportional odds (PO) model for ordinal regression is ubiquitous in the literature. If the assumption of parallel lines does not hold for the data, then an alternative is to specify a non-proportional odds (NPO) model, where the regression parameters are allowed to vary depending on the level of the response. However, it is often difficult to fit these models, and challenges regarding model choice and fitting are further compounded if there are a large number of explanatory variables. We make two contributions towards tackling these issues: firstly, we develop a Bayesian method for fitting these models, that ensures the stochastic ordering conditions hold for an arbitrary finite range of the explanatory variables, allowing NPO models to be fitted to any observed data set. Secondly, we use reversible-jump Markov chain Monte Carlo to allow the model to choose between PO and NPO structures for each explanatory variable, and show how variable selection can be incorporated. These methods can be adapted for any monotonic increasing link functions. We illustrate the utility of these approaches on novel data from a longitudinal study of individual-level risk factors affecting body condition score in a dog population in Zenzele, South Africa.TJM is supported by Biotechnology and Biological Sciences Research Council grant number BB/I012192/1. MM is supported by a grant from the International Fund for Animal Welfare (IFAW) and the World Society for the Protection of Animals (WSPA), with additional support from the Charles Slater Fund and the Jowett Fund. JW is supported by the Alborada Trust and the RAPIDD program of the Science and Technology Directorate, Department of Homeland Security and the Fogarty International Centre.This is the final version of the article. It was first available from International Society for Bayesian Analysis via http://dx.doi.org/10.1214/14-BA88

    The vaccination of 35,000 dogs in 20 working days using combined static point and door-to-door methods in Blantyre, Malawi

    Get PDF
    An estimated 60,000 people die of rabies annually. The vast majority of cases of human rabies develop following a bite from an infected dog. Rabies can be controlled in both human and canine populations through widespread vaccination of dogs. Rabies is particularly problematic in Malawi, costing the country an estimated 13 million USD and 484 human deaths annually, with an increasing paediatric incidence in Blantyre City. Consequently, the aim of this study was to vaccinate a minimum of 75% of all the dogs within Blantyre city during a one month period. Blantyre's 25 administrative wards were divided into 204 working zones. For initial planning, a mean human:dog ratio from the literature enabled estimation of dog population size and dog surveys were then performed in 29 working zones in order to assess dog distribution by land type. Vaccination was conducted at static point stations at weekends, at a total of 44 sites, with each operating for an average of 1.3 days. On Monday to Wednesday, door-to-door vaccination sessions were undertaken in the areas surrounding the preceding static point stations. 23,442 dogs were vaccinated at static point stations and 11,774 dogs were vaccinated during door-to-door vaccinations. At the end of the 20 day vaccination programme, an assessment of vaccination coverage through door-to-door surveys found that of 10,919 dogs observed, 8,661 were vaccinated resulting in a vaccination coverage of 79.3% (95%CI 78.6-80.1%). The estimated human:dog ratio for Blantyre city was 18.1:1. Mobile technology facilitated the collection of data as well as efficient direction and coordination of vaccination teams in near real time. This study demonstrates the feasibility of vaccinating large numbers of dogs at a high vaccination coverage, over a short time period in a large African city

    Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery

    Get PDF
    Rabies remains a disease of significant public health concern. In the Americas, bats are an important source of rabies for pets, livestock, and humans. For effective rabies control and prevention, identifying potential areas for disease occurrence is critical to guide future research, inform public health policies, and design interventions. To anticipate zoonotic infectious diseases distribution at coarse scale, veterinary epidemiology needs to advance via exploring current geographic ecology tools and data using a biological approach. We analyzed bat-borne rabies reports in Chile from 2002 to 2012 to establish associations between rabies occurrence and environmental factors to generate an ecological niche model (ENM). The main rabies reservoir in Chile is the bat species Tadarida brasiliensis; we mapped 726 occurrences of rabies virus variant AgV4 in this bat species and integrated them with contemporary Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The correct prediction of areas with rabies in bats and the reliable anticipation of human rabies in our study illustrate the usefulness of ENM for mapping rabies and other zoonotic pathogens. Additionally, we highlight critical issues with selection of environmental variables, methods for model validation, and consideration of sampling bias. Indeed, models with weak or incorrect validation approaches should be interpreted with caution. In conclusion, ecological niche modeling applications for mapping disease risk at coarse geographic scales have a promising future, especially with refinement and enrichment of models with additional information, such as night-time light data, which increased substantially the model’s ability to anticipate human rabies

    Vaccinate-assess-move method of mass canine rabies vaccination utilising mobile technology data collection in Ranchi, India

    Get PDF
    BACKGROUND: Over 20 000 people die from rabies each year in India. At least 95 % of people contract rabies from an infected dog. Annual vaccination of over 70 % of the dog population has eliminated both canine and human rabies in many countries. Despite having the highest burden of rabies in the world, there have been very few studies which have reported the successful, large scale vaccination of dogs in India. Furthermore, many Indian canine rabies vaccination programmes have not achieved high vaccine coverage. METHODS: In this study, we utilised a catch-vaccinate-release approach in a canine rabies vaccination programme in 18 wards in Ranchi, India. Following vaccination, surveys of the number of marked, vaccinated and unmarked, unvaccinated dogs were undertaken. A bespoke smartphone ‘Mission Rabies’ application was developed to facilitate data entry and team management. This enabled GPS capture of the location of all vaccinated dogs and dogs sighted on post vaccination surveys. In areas where coverage was below 70 %, catching teams were re-deployed to vaccinate more dogs followed by repeat survey. RESULTS: During the initial vaccination cycle, 6593 dogs were vaccinated. Vaccination coverage was over 70 % in 14 of the 18 wards. A second cycle of vaccination was performed in the 4 wards where initial vaccination coverage was below 70 %. Following this second round of vaccination, coverage was reassessed and found to be over 70 % in two wards and only just below 70 % in the final two wards (66.7 % and 68.2 %, respectively). CONCLUSION: Our study demonstrated that mobile technology enabled efficient team management and rapid data entry and analysis. The vaccination approach outlined in this study has the potential to facilitate the rapid vaccination of large numbers of dogs at a high coverage in free roaming dog populations in India. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-015-1320-2) contains supplementary material, which is available to authorized users

    Investigation of short-term surgical complications in a low-resource, high-volume dog sterilisation clinic in India

    Get PDF
    Abstract Background Surgical sterilisation is currently the method of choice for controlling free-roaming dog populations. However, there are significant logistical challenges to neutering large numbers of dogs in low-resource clinics. The aim of this study was to investigate the incidence of short-term surgical complications in a low-resource sterilisation clinic which did not routinely administer post-operative antibiotics. The medical records of all sterilisation surgeries performed in 2015 at the Worldwide Veterinary Service International Training Centre in Tamil Nadu, India were reviewed (group A) to assess immediate surgical complications. All animals in this group were monitored for at least 24 h post-surgery but were not released until assessed by a veterinarian as having uncomplicated wound healing. In the second part of this study from August to December 2015, 200 free-roaming dogs undergoing sterilisation surgery, were monitored for a minimum of 4-days post-surgery to further assess postoperative complications (group B). Results Surgery related complications were seen in 5.4% (95%CI, 4.5–6.5%) of the 1998 group A dogs monitored for at least 24 h, and in 7.0% (3.9–11.5%) of the 200 group B dogs monitored for 4 days. Major complications were classed as those requiring an intervention and resulted in increased morbidity or mortality. Major complications were seen in 2.8% (2.1–3.6%) and 1.5% (3.1–4.3%) of group A and B, respectively. Minor complications requiring little or no intervention were recorded for 2.6% (1.9–3.4%) for group A and 5.5% (2.8–9.6%) for group B. There was no evidence for a difference in complication rates between the two groups in a multivariate regression model. Conclusion This study demonstrated that high volume, low-resource sterilisation of dogs can be performed with a low incidence of surgical complications and low mortality

    Barriers of attendance to dog rabies static point vaccination clinics in Blantyre, Malawi

    Get PDF
    <div><p>Rabies is a devastating yet preventable disease that causes around 59,000 human deaths annually. Almost all human rabies cases are caused by bites from rabies-infected dogs. A large proportion of these cases occur in Sub Saharan Africa (SSA). Annual vaccination of at least 70% of the dog population is recommended by the World Health Organisation in order to eliminate rabies. However, achieving such high vaccination coverage has proven challenging, especially in low resource settings. Despite being logistically and economically more feasible than door-to-door approaches, static point (SP) vaccination campaigns often suffer from low attendance and therefore result in low vaccination coverage. Here, we investigated the barriers to attendance at SP offering free rabies vaccinations for dogs in Blantyre, Malawi. We analysed data for 22,924 dogs from a city-wide vaccination campaign in combination with GIS and household questionnaire data using multivariable logistic regression and distance estimation techniques. We found that distance plays a crucial role in SP attendance (i.e. for every km closer the odds of attending a SP point are 3.3 times higher) and that very few people are willing to travel more than 1.5 km to bring their dog for vaccination. Additionally, we found that dogs from areas with higher proportions of people living in poverty are more likely to be presented for vaccination (ORs 1.58-2.22). Furthermore, puppies (OR 0.26), pregnant or lactating female dogs (OR 0.60) are less likely to be presented for vaccination. Owners also reported that they did not attend an SP because they were not aware of the campaign (27%) or they could not handle their dog (19%). Our findings will inform the design of future rabies vaccination programmes in SSA which may lead to improved vaccination coverage achieved by SP alone.</p></div

    Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions

    Get PDF
    Background: Dogs are ubiquitous in human society and attempts to manage their populations are common to most countries. Managing dog populations is achieved through a range of interventions to suit the dog population dynamics and dog ownership characteristics of the location, with a number of potential impacts or goals in mind. Impact assessment provides the opportunity for interventions to identify areas of inefficiencies for improvement and build evidence of positive change. Methods: This scoping review collates 26 studies that have assessed the impacts of dog population management interventions. Results: It reports the use of 29 indicators of change under 8 categories of impact and describes variation in the methods used to measure these indicators. Conclusion: The relatively few published examples of impact assessment in dog population management suggest this field is in its infancy; however this review highlights those notable exceptions. By describing those indicators and methods of measurement that have been reported thus far, and apparent barriers to efficient assessment, this review aims to support and direct future impact assessment

    Evidence-based control of canine rabies: a critical review of population density reduction

    Get PDF
    Control measures for canine rabies include vaccination and reducing population density through culling or sterilization. Despite the evidence that culling fails to control canine rabies, efforts to reduce canine population density continue in many parts of the world. The rationale for reducing population density is that rabies transmission is density-dependent, with disease incidence increasing directly with host density. This may be based, in part, on an incomplete interpretation of historical field data for wildlife, with important implications for disease control in dog populations. Here, we examine historical and more recent field data, in the context of host ecology and epidemic theory, to understand better the role of density in rabies transmission and the reasons why culling fails to control rabies. We conclude that the relationship between host density, disease incidence and other factors is complex and may differ between species. This highlights the difficulties of interpreting field data and the constraints of extrapolations between species, particularly in terms of control policies. We also propose that the complex interactions between dogs and people may render culling of free-roaming dogs ineffective irrespective of the relationship between host density and disease incidence. We conclude that vaccination is the most effective means to control rabies in all species
    corecore