129 research outputs found

    Probabilistic expert systems for handling artifacts in complex DNA mixtures

    Get PDF
    This paper presents a coherent probabilistic framework for taking account of allelic dropout, stutter bands and silent alleles when interpreting STR DNA profiles from a mixture sample using peak size information arising from a PCR analysis. This information can be exploited for evaluating the evidential strength for a hypothesis that DNA from a particular person is present in the mixture. It extends an earlier Bayesian network approach that ignored such artifacts. We illustrate the use of the extended network on a published casework example

    Analysis of forensic DNA mixtures with artefacts

    Get PDF
    DNA is now routinely used in criminal investigations and court cases, although DNA samples taken at crime scenes are of varying quality and therefore present challenging problems for their interpretation. We present a statistical model for the quantitative peak information obtained from an electropherogram of a forensic DNA sample and illustrate its potential use for the analysis of criminal cases. In contrast with most previously used methods, we directly model the peak height information and incorporate important artefacts that are associated with the production of the electropherogram. Our model has a number of unknown parameters, and we show that these can be estimated by the method of maximum likelihood in the presence of multiple unknown individuals contributing to the sample, and their approximate standard errors calculated; the computations exploit a Bayesian network representation of the model. A case example from a UK trial, as reported in the literature, is used to illustrate the efficacy and use of the model, both in finding likelihood ratios to quantify the strength of evidence, and in the deconvolution of mixtures for finding likely profiles of the individuals contributing to the sample. Our model is readily extended to simultaneous analysis of more than one mixture as illustrated in a case example. We show that the combination of evidence from several samples may give an evidential strength which is close to that of a single-source trace and thus modelling of peak height information provides a potentially very efficient mixture analysis

    Rifting under steam – how rift magmatism triggers methane venting from sedimentary basins

    Get PDF
    During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins

    Altering crystal growth and annealing in ice-templated scaffolds.

    Get PDF
    The potential applications of ice-templating porous materials are constantly expanding, especially as scaffolds for tissue engineering. Ice-templating, a process utilizing ice nucleation and growth within an aqueous solution, consists of a cooling stage (before ice nucleation) and a freezing stage (during ice formation). While heat release during cooling can change scaffold isotropy, the freezing stage, where ice crystals grow and anneal, determines the final size of scaffold features. To investigate the path of heat flow within collagen slurries during solidification, a series of ice-templating molds were designed with varying the contact area with the heat sink, in the form of the freeze drier shelf. Contact with the heat sink was found to be critical in determining the efficiency of the release of latent heat within the perspex molds. Isotropic collagen scaffolds were produced with pores which ranged from 90 μm up to 180 μm as the contact area decreased. In addition, low-temperature ice annealing was observed within the structures. After 20 h at -30 °C, conditions which mimic storage prior to lyophilization, scaffold architecture was observed to coarsen significantly. In future, ice-templating molds should consider not only heat conduction during the cooling phase of solidification, but the effects of heat flow during ice growth and annealing.The authors gratefully acknowledge the financial support of the Gates Cambridge Trust, the Newton Trust, and ERC Advanced Grant 320598 3D-E. A.H. held a Daphne Jackson Fellowship funded by the University of Cambridge.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s10853-015-9343-

    Serum anti-GM2 and anti-GalNAc-GD1a IgG antibodies are biomarkers for acute canine polyradiculoneuritis

    Get PDF
    Objectives: A previous single-country pilot study indicated serum anti-GM2 and anti-GA1 anti-glycolipid antibodies as potential biomarkers for acute canine polyradiculoneuritis. This study aims to validate these findings in a large geographically heterogenous cohort. Materials and Methods: Sera from 175 dogs clinically diagnosed with acute canine polyradiculoneuritis, 112 dogs with other peripheral nerve, cranial nerve or neuromuscular disorders and 226 neurologically normal dogs were screened for anti-glycolipid antibodies against 11 common glycolipid targets to determine the immunoglobulin G anti-glycolipid antibodies with the highest combined sensitivity and specificity for acute canine polyradiculoneuritis. Results: Anti-GM2 anti-glycolipid antibodies reached the highest combined sensitivity and specificity (sensitivity: 65.1%, 95% confidence interval 57.6 to 72.2%; specificity: 90.2%, 95% confidence interval 83.1 to 95.0%), followed by anti-GalNAc-GD1a anti-glycolipid antibodies (sensitivity: 61.7%, 95% confidence interval 54.1 to 68.9%; specificity: 89.3%, 95% confidence interval 82.0 to 94.3%) and these anti-glycolipid antibodies were frequently present concomitantly. Anti-GA1 anti-glycolipid antibodies were detected in both acute canine polyradiculoneuritis and control animals. Both for anti-GM2 and anti-GalNAc-GD1a anti-glycolipid antibodies, sex was found a significantly associated factor with a female to male odds ratio of 2.55 (P=0.0096) and 3.00 (P=0.0198), respectively. Anti-GalNAc-GD1a anti-glycolipid antibodies were more commonly observed in dogs unable to walk (odds ratio 4.56; P=0.0076). Clinical Significance: Anti-GM2 and anti-GalNAc-GD1a immunoglobulin G anti-glycolipid antibodies represent serum biomarkers for acute canine polyradiculoneuritis
    • …
    corecore