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Abstract

We introduce a new methodology, based upon probabilistic expert systems, for
analysing forensic identification problems involving DNA mixture traces using quan-
titative peak area information. Peak area is modelled with conditional Gaussian
distributions. The expert system can be used for ascertaining whether individuals,
whose profiles have been measured, have contributed to the mixture, but also to
predict DNA profiles of unknown contributors by separating the mixture into its in-
dividual components. The potential of our probabilistic methodology is illustrated
on case data examples and compared with alternative approaches. The advantages
are that identification and separation issues can be handled in a unified way within a
single probabilistic model and the uncertainty associated with the analysis is quan-
tified. Further work, required to bring the methodology to a point where it could be
applied to the routine analysis of casework, is discussed.

Some key words and phrases: DNA mixture, forensic identification, mixture separa-
tion, probabilistic expert system, peak weight.

1 Introduction

Probabilistic expert systems (PES) for evaluating DNA evidence were introduced by Dawid
et al. [1]. In a general review of the analysis of DNA evidence, Foreman et al. [2] include
several applications of PES and emphasize their potential by predicting that this method-
ology “will offer solutions to DNA mixtures and many more complex problems in the
future.”.

This article is concerned with the analysis of mixed traces where several individuals may
have contributed to a DNA sample left at a scene of crime. Mortera et al. [3] showed how
to construct a PES using information about which alleles were present in the mixture, and
we refer to this article for a general description of the problem and for genetic background
information. Other earlier contributions based solely on allelic presence in the mixture are
Evett et al. [4] and Weir et al. [5].

The results of a DNA analysis are usually represented as an electropherogram (EPG)
measuring responses in relative fluorescence units (RFU) and the alleles in the mixture
correspond to peaks with a given height and area around each allele, see Figure 1. The
band intensity around each allele in the relative fluorescence units represented, for example,
through their peak areas, contains important information about the composition of the
mixture.

Experiments using heterozygous samples and mixtures prepared in known proportions
have provided information on the variability of peak imbalance and the extent of stutter
that can be expected when amplifying a DNA mixture. This information was used by
Clayton et al. [6] to formulate general guidelines for forensic experts in order to resolve
DNA mixtures based on quantitative peak area information. Gill et al. [7] built a computer
program to estimate the proportion of the individual contributions in two-person mixtures
and to rank the genotype combinations based on minimizing a residual sum of squares.
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Figure 1: An electropherogram (EPG) of marker VWA from a mixture. Peaks represent
alleles at 15, 17 and 18 and the areas and height of the peaks express the quantities of
each. Since the peak around 17 is high, this indicates two alleles with repeat number 17.
This image is supplied courtesy of LGC Limited, 2004.

More recently, Bill et al. [8] have developed PENDULUM, a computer package to automate
the guidelines in [6] and [7]. First, a list of all possible genotype combinations is made and
those outside heterozygous peak balance limits are eliminated; then the list is scored with
respect to mixture proportion. The possibility of allelic dropout is considered, but other
artifacts, such as stutter, are not accounted for. The primary purpose of PENDULUM is
to eliminate unreasonable genotypic combinations. It also ranks the genotypes but this is
not based on a probabilistic order, so no quantification of the uncertainty in the analysis
is possible. Evidential calculations cannot be carried out directly within PENDULUM,
however they may be performed by using the output of PENDULUM as the input to an
external probabilistic model.

Perlin and Szabady [9] and Wang et al. [10] used numerical methods known as Linear

Mixture Analysis (LMA) and Least Square Deconvolution (LSD) for separating mixture
profiles using peak area information. Both methods are based on enumerating a complete
set of possible genotypes that may have generated the mixture profile, on the assumptions
that the mixture proportion of the contributors’ DNA in the sample is constant across
markers, so that the peak area of an allele will be approximately proportional to the
proportion of that allele in the mixture. This may be used to calculate — via a least
squares heuristic — an estimate for the mixture proportion. The major difference between
the two methods is that Perlin and Szabady seek a single mixture proportion estimated
using all of the markers simultaneously, whilst Wang et al. estimate a mixture proportion
for each marker separately and then eliminate genotype combinations giving inconsistent
estimates of this proportion across markers. Thus the methods of both [9] and [10] share
features with that of Bill et al. [8].
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The methods utilizing peak area information described above are not probabilistic in
nature, nor do they use information about allele frequency. In contrast, the methodology
proposed in Evett et al. [11] combines a model using the gene frequencies with a model
describing variability in scaled peak areas to calculate likelihood ratios and study their
sensitivity to assumptions about the mixture proportions.

Our approach incorporates elements similar to all of those described above, but unifies
these in a single Bayesian network model. More specifically, we build a PES for mixture
traces based on conditional Gaussian distributions for the peak areas, given the compo-
sition of the true DNA mixtures; see Chapter 7 of [12] as well as [13]. The exact same
network is then used both for an evidential calculation as well as for the separation of DNA
mixtures, with the additional benefit of a full probabilistic quantification of any uncertainty
associated with the analysis.

The main focus of the present paper is to illustrate the basic ideas in a new methodology
for resolving DNA mixtures based on PES. For the sake of clarity and simplicity, we
only consider a DNA mixture from exactly two contributors, which seems to be the most
common scenario in forensic casework [14]. We do not allow for further complications
such as stutter, dropout alleles, etc. In order to develop the methodology into a practical
tool for forensic laboratories these additional complications will need to be considered.
However, we emphasize that the flexibility and modularity of the PES approach readily
enables extension and modification of our network to include complications such as an
unknown number of contributors, indirect evidence, dropout, stutter, etc. along the lines
given in [3].

An analysis of a mixed trace can have different purposes, several of which can be relevant
simultaneously, making a unified approach particularly suitable. However, for the sake of
exposition we consider the issues separately. The first focus of our analysis will be that of
evidential calculation, detailed in § 4. Here a suspect with known genotype is held and we
want to determine the likelihood ratio for the hypothesis that the suspect has contributed
to the mixture vs. the hypothesis that the contributor is a randomly chosen individual. We
distinguish two cases: the other contributor could be a victim with a known genotype or a
contaminator with an unknown genotype, possibly without a direct relation to the crime.
This could be a laboratory contamination or any other source of contamination from an
unknown contributor.

Another use of our network is the separation of profiles, i.e. identifying the genotype
of each of the possibly unknown contributors to the mixture, the evidential calculation
playing a secondary role. This use is illustrated in § 5.

2 Basic model assumptions

We assume the usual Mendelian genetic model for the allele composition of the mixture
traces with known gene frequencies of single STR alleles, using those reported in Evett et
al. [11] and Butler et al. [15] for U.S. Caucasians. We use the latter for analysing data
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taken from Clayton et al. [6], Perlin and Szabady [9]1 and Wang et al. [10].
We first present a description of the model before introducing the mathematical details.

In essence, the PES is a probabilistic model for relating the pre-amplification and post-
amplification relative amounts of DNA in a mixture sample. The model is idealized in that
it ignores complicating artifacts such as stutter, drop-out alleles and so on, and assumes
that the mixture is made up of DNA from two people, who we refer to as p1 and p2.
Now prior to amplification, and provided the mixture sample has not been degraded to
the point of breaking up tissue cells, the sample put into the amplification apparatus will
consist of an unknown number of cells from p1 and a further unknown number of cells from
p2. Then, with every cell containing exactly two alleles from each marker, the fraction or
proportion of cells from p1 is also a common measure across the markers of the amount of
DNA from p1. We denote this common fraction, or proportion, by θ.

In an ideal amplification apparatus, during each amplification cycle the proportion of
alleles of each allelic type would be preserved without error. We model departures from
this ideal as random variation using the Gaussian distributions in (1), whose mean for
each allele is its pre-amplification proportion for the marker system it belongs to. The
variance has a simple dependence on the mean such that in the two limiting cases of (i)
the pre-amplification proportion is zero, or (ii) the pre-amplification proportion is unity,
the variance is zero. In the case of (i) this means that if there is no allele of a certain
type in the mixture prior to amplification, there is none post-amplification. In the case
of (ii) this means that if for a given marker there is only one allelic type present in the
mixture pre-amplification, then only that type is present in that marker post-amplification.
Our model introduces an additional variance term to represent other measurement error,
represented by ω2.

The post-amplification proportions of alleles for each marker are represented in the
peak area information, which we include in the analysis through the relative peak weight.
The (absolute) peak weight wa of an allele with repeat number a is defined by scaling the
peak area with the repeat number as

wa = aαa,

where αa is the peak area around allele a. Multiplying the area with the repeat number
is a crude way of correcting for the fact that alleles with a high repeat number tend to be
less amplified than alleles with a low repeat number. For issues concerning heterozygous
imbalance see [16].

We further assume that

• The pre-amplification mixture proportion θ is constant across markers, for the reasons
outlined above;

• The peak weight for an allele is approximately proportional to the amount of DNA
of that allelic type;

1This dataset has an observed allele 25.2 of the marker FGA. As none of the 302 subjects in [15] had
this allele, we chose to use 1/604=0.00166 as its frequency. For the same reason, in the example taken
from [6] allele 36 of the D21 system was assigned a frequency of 0.00166.
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• The peak weight for an allele possessed by both contributors is the sum of the cor-
responding weights for the two contributors.

To avoid arbitrariness in scaling we consider the observed relative peak weight ra, ob-
tained by scaling with the total peak weight as

ra = wa/w+, w+ =
∑

a

wa,

so that then
∑

a ra = 1.
Our simple model for the relative peak weight, denoted by the random variable Ra,

assumes a Gaussian error distribution

Ra ∼ N (µa, τ
2
a ), µa = {θn(1)

a + (1 − θ)n(2)
a }/2, (1)

where θ is the proportion, or fraction, of DNA in the mixture originating from the first
contributor, n(i)

a is the number of alleles with repeat number a possessed by person i.
The error variance τ 2

a has the form

τ 2
a = σ2µa(1 − µa) + ω2 (2)

where σ2 and ω2 are variance factors for the contributions to the variation from the am-
plification and measurement processes.

The model can be seen as a second order approximation to a more sophisticated model
based on gamma distributions for the absolute scaled peak weights (to be discussed else-
where).

In addition we need to consider the correlation between weights due to the fact that
they must add up to unity. If this is the only source of correlation, its inferential effect can
be taken correctly into account by using the variance structure

τ 2
a = σ2µa + ω2 (3)

and considering the complete set of observed peak weights as observed evidence, as argued
in Appendix A. Note that this is in contrast to Cowell et al. [17] who ignored the correlation
without modifying the variance from (2) to (3), but essentially obtained results with the
same qualititative behaviour as in the present paper.

Unless stated otherwise, we have used σ2 = 0.01 and ω2 = 0.001, corresponding ap-
proximately to a standard deviation for the observed relative weight of about

√

0.01/4 + 0.001 = 0.06

for µa = 0.5 substituted into (2). These parameter values imply that when amplifying
DNA from one heterozygous individual (for which µa = 0.5), an ra value at two standard
deviations from the mean would give a value of 0.38/0.62 = 0.61 for the ratio of the minor
to the major peak area; this is about the limit of variability in peak imbalance that has
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been reported in the literature [18], and suggests that our chosen parameter values are
perhaps conservative.

In general the variance factors may depend on the marker and on the amount of DNA
analysed, but for simplicity we use the values above. Our PES model is robust to small
changes in these parameter estimates. We are planning a full data analysis in order to
refine the estimates and obtain a proper calibration of the variances for use in casework.

The simple model above seems in any case sufficiently accurate and adequate for the
purposes of the present paper, and has the advantage that the calculations may be per-
formed quickly using any available Bayesian network software that implements evidence
propagation for conditional-Gaussian networks.

3 Bayesian networks for DNA mixtures with peak

weights

3.1 Background

Here we give a very brief description of the basic ingredients of a Bayesian network or
probabilistic expert system. Complete details can be found in [12]. A Bayesian network
represents, by means of a directed acyclic graph (DAG), the complex probabilistic rela-
tionships of dependence and independence among a set of variables. (See Figure 11 for a
simple example.) The nodes of the network represent the random variables and directed
edges (arrows) connecting nodes describe the relationships among the variables. The joint
probability structure of all the nodes in the network is determined by the conditional prob-
ability of each node given its graphical “parents”2. The joint probability model of all the
nodes is thus expressed in terms of simple submodels. Fast and efficient computational
algorithms exist for the exact calculation of marginal and conditional probabilities for the
conditional-Gaussian networks used in this paper [13]. These enable the evidence (or in-
formation) on a set of nodes to be propagated to all nodes in the network and thus obtain
the updated posterior conditional probabilities for all the variables represented.

Bayesian networks can easily be implemented using readily available software such
as Hugin

3. The graphical interface can be used to specify the qualitative relationships
between the variables, their values and the conditional probabilities. The network is then
compiled (giving the marginal distribution of all nodes) and after evidence is inserted and
propagated throughout the network the updated conditional probability distributions can
be read off the nodes of interest.

The Bayesian networks constructed for the examples in this paper were implemented
in Hugin, as described in Appendix B, and also in a separate program Maies, described
in Appendix C. One reason for this duplication was to ensure correctness and additional
flexibility in the specifications of the Bayesian networks. The calculations performed at a

2We say that node A is a graphical parent of node B if there is an edge directed from A to B.
3See www.hugin.com
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high level of discretization were initially performed using Maies, and then checked using
Hugin by exporting from Maies non object-oriented Bayesian networks to files in the
Hugin format.

3.2 Object-Oriented Networks

Object-oriented Bayesian networks [19, 20] have a hierarchical structure where any node
itself can represent a (object-oriented) network containing several instances of other generic
classes of networks. This framework is particularly suited for an application area such as
the present because we can exploit the similarity between elements of the networks in a
modular and flexible construction, making the networks more and more complex by simply
adding new objects which perform different tasks. Two recent examples of object-oriented
Bayesian networks applied to forensic DNA problems are [21] and [22].

Instances have interface input and output nodes as well as ordinary nodes. Instances
of a particular class have identical conditional probability tables for non-input nodes. In-
stances are connected by arrows from output nodes to input nodes. These arrows represent
identity links whereas arrows between ordinary nodes represent probabilistic dependence.
Implementation of object-oriented Bayesian networks is supported by the program Hugin

6.4, which we use in our analyses. A more detailed description of the component object-
oriented networks used in this paper may be found in Appendix B.

3.3 Maies: A PES for analysing mixed traces

As indicated above, in parallel to the development of the object-oriented networks a sep-
arate computer program called Maies—Mixture Analysis In Expert Systems—was de-
veloped to provide an independent check of the calculations. It also provided a flexible
environment for specification of input and output of data that allowed for sensitivity anal-
ysis and, for example, to provide the data in a useful form for producing posteriors plots.

The input to Maies is simply the measured peak area information on up to four alleles
per marker, the population gene frequencies of these alleles, and additional genotypic
information (if available) about the potential contributors.

After entering peak area information and available genetic profiles on people, the soft-
ware constructs a single Bayesian network on which the probability calculations are per-
formed (see Figure 20). In constructing the Bayesian network the user is presented with
the options of changing default values for the scale σ2 of the amplification error variance,
the measurement error variance ω2, and the number of discrete states used for the node
that represents θ, the true pre-amplification fraction of DNA originating from individual
1. Sensitivity analysis may be performed in a simple, straightforward manner by varying
these three inputs. Peak areas are automatically converted to normalized weights by the
program, and entered as evidence in the relevant nodes.

The user can temporarily retract or reinstate evidence on the two potential contributors
to the mixture by use of menu selections, thus allowing an evidential calculation to be
converted to one of deconvoluting a mixture arising from two unknown contributors, or
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vice versa. A more detailed description of the networks generated by Maies may be found
in Appendix C.

4 Evidence calculations

This section illustrates (through the analysis of real mixture examples) how to use our
PES to calculate the weight of the evidence—in the form of a likelihood ratio—for a given
suspect to have contributed to a trace under different circumstances.

The evidence could consist of DNA profiles extracted from a suspect, s, a victim, v, and
the mixed trace. In this case we compute the likelihood ratio in favour of the hypothesis
that the victim and suspect contributed to the mixture: H0 : v&s, vs. the hypothesis that
the victim and an unknown individual, u contributed to the mixture: H1 : v&u.

A variant has an unknown contaminator, u instead of a victim, in which case the
hypotheses are H0 : u&s versus H1 : 2u.

In the results shown below (and also for the examples in § 5) the variable describing
the mixture proportion θ has been discretized to having 101 states 0, 0.01, 0.02, . . . , 0.99, 1,
but experiments indicate very low sensitivity to the discretization as long as it is not far
too rough and 10-20 states would probably be fully appropriate.

4.1 Genotype of suspect and victim available

This example is taken from Wang et al. [10], stating P. Graham of the Texas Department
of Public Safety as the data source. Table 1 displays the alleles observed in the mixture,
the measured peak area and the relative weight on 9 markers, together with the genotypes
of two potential contributors, here named suspect, s and victim, v. We will in the following
refer to this data as the Graham data.

The evidence in this table is now entered and propagated throughout the network
yielding the marginal posterior probabilities or densities of the quantities of interest. The
evidence on allelic repeat number is inserted in the appropriate nodes; details on how this
is done are given in Appendix B.6 and Appendix C.4. When peak area information is also
used, the nodes representing the observed relative peak weights are set to their correspond-
ing values, as illustrated in Appendix B.7 and Appendix C.5. Taking appropriate ratios
in the posterior probabilities associated with the target node yields the likelihood ratio
in favour of H0 : v&s versus H1 : v&u. Table 2, column “Areas” displays the logarithm
of this likelihood ratio, and column “Alleles” the corresponding ratio when only the evi-
dence on the repeat number of the alleles is used. The last columns of Table 2 show the
log-likelihood ratio when the mixture proportion θ is assumed known at given values. The
same network is used to compute all the quantities in Table 2.

Note that the likelihood ratio is essentially constant in the region 0.3 < θ < 0.4 which
is the plausible region in the light of the data. The posterior distribution of the mixture
proportion θ is displayed in Figure 2. Note that this posterior distribution has its maximum
around 0.34, close to the value reported in [10].
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Table 1: Graham data showing mixture composition, peak areas, relative weights, suspect’s
and victim’s profiles.

Marker Alleles Peak area Relative weight Suspect Victim

D3 15 1242 0.3361 15

16 657 0.1897 16

17 1546 0.4742 17 17

D5 7 486 0.0999 7

12 512 0.1804 12

13 1886 0.7198 13

D7 10 614 0.3232 10

11 1169 0.6768 11

D8 12 1842 0.6166 12

13 490 0.1777 13

16 461 0.2057 16

D13 8 734 0.3128 8

9 1068 0.5120 9 9

11 299 0.1752 11

D18 12 440 0.1724 12

13 1503 0.6380 13

15 387 0.1896 15

D21 30 842 0.3087 30

30.2 490 0.1808 30.2

31.2 509 0.1941 31.2

32.2 804 0.3164 32.2

FGA 22 850 0.3483 22

23 468 0.2005 23

24 681 0.3045 24

25 315 0.1467 25

VWA 16 616 0.1900 16

17 2021 0.6625 17

18 425 0.1475 18
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Table 2: Logarithm of the likelihood ratios in favour of H0 : v&s vs. H1 : v&u
for the Graham data.

Areas Alleles Assumed known mixture proportion

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Log10LR 14.47 12.93 10.97 13.44 14.46 14.42 12.42 8.58 2.76 -7.19 -27.79
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Figure 2: Posterior distribution of the mixture proportion for the Graham data using both
the suspect’s and the victim’s genotype.
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The inclusion of area information is indeed strengthening the evidence against the
suspect, increasing the logarithm of the likelihood ratio from 12.93 to 14.47, approximately
corresponding to a factor 36. This is a modest increase and reflects the fact that when
information about the genotype of the victim is available, peak area does not make much
difference to the likelihood ratio as the genotypes themselves are very informative.

4.2 Only genotype of suspect available

Our next example is taken from Evett et al. [11] and has only information of the geno-
type from one potential contributor, here named the suspect, whereas the other unknown
contributor is termed contaminator. The data refers to a 10:1 mixture of two individuals.
The data is displayed in Table 3 and is henceforth referred to as the Evett data. Table 4
displays the logarithm of this likelihood ratio together with the corresponding ratio when
peak weights are ignored, and the ratios when the mixture proportion θ is assumed known
at given values.

Note that the strengthening of evidence against the suspect is more dramatic when
information on the contaminator is absent: the logarithm of the likelihood ratio changes
from 4.4 to 8.23, corresponding to an additional factor around 6000, as compared to a
factor 36 above.

Also here the likelihood ratio is essentially constant over a region which completely
covers the posterior plausible range 0.85 < θ < 0.95.

The posterior distribution of the mixture proportion θ is displayed in Figure 3. The
maximum occurs around the value 0.90 which is a little off the true 10:1 mixture proportion.
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Figure 3: Posterior distribution of the mixture proportion for the Evett data using the
suspect’s genotype.
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Table 3: Evett data showing mixture composition, peak areas and relative weights from a
10:1 mixture of two individuals, with suspect’s genotype specified.

Marker Alleles Peak area Relative weight Suspect

D8 10 6416 0.4347 10

11 383 0.0285

14 5659 0.5368 14

D18 13 38985 0.8871 13

16 1914 0.0536

17 1991 0.0592

D21 59 1226 0.0525

65 1434 0.0676

67 8816 0.4284 67

70 8894 0.4515 70

FGA 21 16099 0.5699 21

22 10538 0.3908 22

23 1014 0.0393

THO1 8 17441 0.4015 8

9.3 22368 0.5985 9.3

VWA 16 4669 0.4170 16

17 931 0.0884

18 4724 0.4747 18

19 188 0.0199

Table 4: Logarithm of the likelihood ratios in favour of H0 : u&s vs. H1 : 2u
for the Evett data.

Areas Alleles Assumed known mixture proportion

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Log10LR 8.23 4.40 -237.47 -138.73 -77.53 -31.68 5.06 8.32 8.52 8.53 8.53
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The absolute value of the likelihood ratios are slightly different from those given by [11],
who report a logarithm of the likelihood ratio of 7.3. This discrepancy is most likely due
to slight differences between our model and the model used by [11]. On the other hand,
they report a likelihood ratio based on allele presence alone of 5800, whereas we find a
ratio around 25000 using the gene frequencies reported in their paper, and insist the latter
must be the correct value.

5 Separation of mixtures

Deconvolution of mixtures or separating a mixed DNA profile into its components has been
studied by Perlin and Szabady [9], Wang et al. [10], and Bill et al. [8], among others. Here,
we show how separation of mixtures can be solved by the same network model used for
evidence calculations. A mixed DNA profile has been collected and the genotypes of one
or more unknown individuals who have contributed to the mixture is desired, for example
with the purpose of searching for a potential perpetrator among an existing database of
DNA profiles.

For a two-person mixture, the easiest case to consider is clearly that of separation of
a single unknown profile, i.e. when the genotype of one of the contributors to the mixture
is known. The case when both contributors are unknown is more difficult. In the latter
situation this is only possible to a reasonable accuracy when the contributions to the DNA
mixture has taken place in quite different proportions.

We have chosen to show two alternative methods for predicting the genotype of the
unknown contributor(s). In the first method we report the most probable genotype (or
pair of genotypes) of the unknown contributor(s) for each marker separately. This result is
obtained directly from the standard propagation method in the probabilistic expert system,
known as sum-propagation. Note that this genotype is not necessarily the jointly most
probable across markers. We therefore also report the joint probability of the genotypes
chosen in this way. If this happens to be larger than 0.5, the most probable genotype has
clearly been identified.

The second method calculates, by a method termed semimax -propagation, the most
likely joint configuration of all unobserved discrete nodes, given the evidence available, and
reports the genotypes of the unknown contributor(s) associated with this configuration.
The semimax propagation first integrates over all unobserved continuous variables and
then performs max-propagation as described in [12], Section 6.4.1, to identify the most
probable configuration. Note again, that this may not be the most probable genotype across
markers. There is no general efficient method for calculating the latter, but identifying the
two configurations above and reporting their joint probabilities would be fully satisfactory
for most purposes as they are most interesting when their joint probability is high.

The two methods generally give results that agree quite closely, the difference largely
being due to correlations between the markers originating from the fact that the fraction of
DNA supplied by each contributor is unknown. When this fraction is well determined by
the evidence, the markers are close to being independent. In such cases the two methods
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tend to give identical results. It then also holds that the joint posterior probability of
the genotypes of the unknown contributors is approximately equal to the product of those
probabilities for each marker separately.

It would seem appropriate to report a list of probable genotypes for the unknown
contributor(s), with their associated probabilities, but this would demand a slightly more
sophisticated calculation and is beyond the scope of this particular paper.

5.1 Separating a single unknown profile

Our next example uses data from Perlin and Szabady [9], henceforth referred to as the
Perlin data, displayed in Table 5.

The two individuals contributing to the mixture are here named suspect and victim and
Table 6 displays the predicted genotype of the suspect, using information from the victim
alone.

As in [9] the genotype of the unknown contributor is essentially determined exactly and
the posterior distribution of the mixture proportion concentrates around the true value of
0.7, as displayed in Figure 4.
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Figure 4: Posterior distribution of the mixture proportion for the Perlin data, using geno-
typic information on the victim only.

For comparison we have also made a similar calculation for the other two examples.
The results are displayed in Table 7 and Table 8.
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Table 5: Perlin data showing mixture composition, peak areas, relative weights, suspect’s
and victim’s genotypes from a 7:3 mixture of two individuals.

Marker Alleles Peak area Relative Weight Suspect Victim

D2 16 0.3190 0.1339 16

18 0.6339 0.2992 18

20 0.3713 0.1947 20

21 0.6758 0.3722 21

D3 14 1.0365 0.5010 14 14

15 0.9635 0.4990 15 15

D8 9 0.7279 0.2832 9

12 0.2749 0.1426 12

13 0.6813 0.3829 13

14 0.3160 0.1913 14

D16 11 1.4452 0.6801 11

13 0.2889 0.1607 13

14 0.2660 0.1593 14

D18 12 0.3443 0.1504 12

13 0.6952 0.3290 13

14 0.6755 0.3443 14

17 0.2850 0.1764 17

D19 12.2 0.6991 0.3109 12.2

14 0.6060 0.3092 14

15 0.6949 0.3799 15

D21 27 0.2787 0.1289 27

29 0.7876 0.3913 29

30 0.9337 0.4798 30 30

FGA 19 1.0580 0.4621 19 19

24 0.2830 0.1561 24

25.2 0.6589 0.3817 25.2

THO1 6 0.3178 0.1268 6

7 1.0074 0.4691 7 7

9 0.6749 0.4041 9

VWA 17 1.4755 0.7265 17

18 0.5245 0.2735 18
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Table 6: Predicted genotype of suspect for the Perlin data, using genotype information for
victim only. All markers are correctly identified by both sum and semi-max propagation.

Marker Genotype Probability

D2 18 21 1

D3 14 15 1

D8 9 13 1

D16 11 11 1

D18 13 14 1

D19 12.2 15 1

D21 29 30 1

FGA 19 25.2 1

THO1 7 9 1

VWA 17 17 1

Table 7: Predicted genotype of suspect for Graham data, using genotype for victim only.
All markers are correctly identified by both sum and semi-max propagation. The number
in brackets is the product of individual marker probabilities.

Marker Genotype Probability

D3 16 17 0.982624

D5 7 12 1

D7 10 10 0.984372

D8 13 16 1

D13 9 11 0.995181

D18 12 15 1

D21 30.2 31.2 1

FGA 23 25 1

VWA 16 18 1

joint 0.962504 (0.962606)
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Table 8: Predicted genotype of contaminator for Evett data, using information from sus-
pect. Identical results are obtained using sum and semi-max propagation. The number in
brackets is the product of individual marker probabilities.

Marker Genotype Probability

D8 11 14 0.834050

D18 16 17 1

D21 59 65 1

FGA 21 23 0.815391

THO1 9.3 9.3 0.826110

VWA 17 19 1

joint 0.567333 (0.561818)

The situation for the Graham data is similar to the Perlin data: all markers are correctly
identified, with probabilities very close to 1 in all cases. Analysis of the Evett data yield
probabilities between 0.8 and 1 on all markers. Evett et al. [11] does not contain the
genotype of the second contributor so we do not know whether there are classification
errors for this example. Figure 3 and Figure 5 display the posterior distribution of the
mixture proportion for these two cases.

5.2 Separating two unknown profiles

We now turn to the problem of separating a mixture into two components, using peak area
and repeat number information but no information regarding the two contributors to the
mixture. Using only this information will lead to an identifiability problem in assigning
genotype combinations to each person, because of the symmetry between the individuals p1
and p2 in the network of Figure 20 or in the equivalent object-oriented network Figure 18.

To remove this problem it is sufficient to enter evidence that the pre-amplification
proportion of DNA in the sample from individual p1 is at least one half of the total DNA
in the sample. (The alternative, that individual p1 contributes at most half of the DNA to
the mixture sample could as equally well be used to break the symmetry.) Using Hugin

this symmetry breaking may be achieved by entering likelihood evidence directly into the
fraction node; in Maies direct entering of likelihood evidence is not possible, so instead
this is achieved by entering evidence on the sym node. The node sym has two possible
states, θ ≥ 0.5 and θ ≤ 0.5. Selecting one state as evidence breaks the symmetry (the user
does this via a menu selection). It is important to note that setting the proportion of DNA
originating from p1 to be less that 0.5 in the pre-amplification mixture does not mean that
post-amplification the proportion of DNA originating from p1 is necessarily also less than
0.5, the variance structures in our model can allow this to be greater than 0.5. What it
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Figure 5: Posterior distribution of mixture proportion for Graham data using genotypic
information from the victim only.

does imply is that the posterior distribution of the pre-amplification fraction will be zero
for values greater than 0.5.

Our first example uses the Evett data, ignoring the information on the suspect. The
posterior distribution of the mixture proportion θ is displayed as the solid curve in Figure 6.
The distribution is similar in shape to that in Figure 3, which uses the suspect genotype
information. The broken curve in Figure 6 shows the posterior using the larger variance
factor σ2 = 0.1. We note that this change of variance by an order of magnitude has a
notable effect on the posterior distribution of mixture proportion.

The predicted genotypes of the two contributors are shown in Table 9, with the suspect’s
profile being predicted correctly for both choices of variance even though the probability
of the chosen genotype is strongly reduced when the larger variance factor is used. Note
that the probabilities in the left half of Table 9 are the same as those in Table 8 (to the
accuracy given). This would not normally be expected, but for this example it turns out
that in separating the profiles the genotype of person 1 is predicted with high certainty
to be the same as the suspect. Hence adding in the suspect’s profile as was done for the
calculations of Table 8 would have very little affect on the predictions made by the system
for the genotype of the contaminator.

Our next example uses the Perlin data. The posterior distribution for θ is shown as
the solid curve in Figure 7, with the mode at 0.69 very close to the value reported of 0.7.
The predicted genotypes of the two contributors are shown in Table 10, with all but one of
the classifications correct. The sum of the joint probabilities for the two chosen genotypic
combinations is around 0.61, indicating that other plausible explanations are available.
This is essentially due to uncertainty about the genotype for marker VWA and to a lesser
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Figure 6: Posterior distribution of mixture proportion from Evett data using no genotypic
information: solid line σ2 = 0.01, broken line σ2 = 0.1.

Table 9: Predicted genotypes of both contributors for Evett data with σ2 = 0.01 and
σ2 = 0.1. Identical results are obtained using sum and semi-max propagation, with suspect
(p1) correct on every marker. The number in brackets is the product of individual marker
probabilities.

σ2 = 0.01 σ2 = 0.1

Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D8 10 14 11 14 0.834050 10 14 11 14 0.654367

D18 13 13 16 17 1 13 13 16 17 0.876868

D21 67 70 59 65 1 67 70 59 65 0.999405

FGA 21 22 21 23 0.815391 21 22 21 23 0.489847

THO1 8 9.3 9.3 9.3 0.826110 8 9.3 9.3 9.3 0.574267

VWA 16 18 17 19 1 16 18 17 19 0.999390

joint 0.567333 (0.561818) 0.161705 (0.161215)
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extent for the marker D19.
Increasing σ2 by a factor of 10 to σ2 = 0.1 yields the posterior distribution for θ shown

by the broken line Figure 7. In this case the effect of choosing an inflated variance factor
is dramatic, also yielding reduced genotype probabilities and several classification errors as
shown in Table 11. Note also that here there is a marked discrepancy between probability
of the joint genotype and the product of the probabilities for each marker.
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Figure 7: Posterior distribution of mixture proportion from Perlin data using no genotypic
information: solid line σ2 = 0.01, broken line σ2 = 0.1.

Similar behaviour occurs in our third example that uses the Graham data. The pos-
terior distribution of θ is shown as the solid curve in Figure 8, with a maximum for the
major contributor around 0.65; the predicted profiles are shown in Table 12, with one clas-
sification error. However note for this classification error (in D7, using sum-propagation)
the probability assigned to the genotype pair is around 0.66, with the correct classification
(picked out by the semi-max method) having a probability of around 0.33. Note that the
two chosen genotypes together account for essentially all of the probability mass.

Increasing the variance factor σ2 to 0.1 yields more classification errors but is also ac-
companied by much lower probabilities, as shown in Table 13. The corresponding posterior
distribution of θ is plotted as the broken line in Figure 8.
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Table 10: Predicted genotypes of both contributors for Perlin data with σ2 = 0.01. The
number in brackets is the product of individual marker probabilities. For semi-max prop-
agation all classifications are correct but for sum propagation there is a classification error
in marker VWA (italicized).

sum prop semi-max

Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D2 18 21 16 20 0.996545 18 21 16 20 0.996545

D3 14 15 14 15 0.974334 14 15 14 15 0.974334

D8 9 13 12 14 0.992179 9 13 12 14 0.992179

D16 11 11 13 14 0.994388 11 11 13 14 0.994388

D18 13 14 12 17 0.999520 13 14 12 17 0.999520

D19 12.2 15 14 14 0.796869 12.2 15 14 14 0.796869

D21 29 30 27 30 0.955125 29 30 27 30 0.955125

FGA 19 25.2 19 24 0.971191 19 25.2 19 24 0.971191

THO1 7 9 6 7 0.922004 7 9 6 7 0.922004

VWA 17 18 17 17 0.549705 17 17 18 18 0.393374

joint 0.353239 (0.358721) 0.261764 (0.256704)
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Figure 8: Posterior distribution of mixture proportion from Graham data using no geno-
typic information: solid line σ2 = 0.01, broken line σ2 = 0.1.
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Table 11: Predicted genotypes of both contributors for Perlin data with σ2 = 0.1. The
number in brackets is the product of individual marker probabilities. There are classifica-
tion errors in five markers (italicized).

sum prop semi-max

Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D2 18 21 16 20 0.285179 18 21 16 20 0.285179

D3 14 15 14 15 0.461512 14 15 15 15 0.229006

D8 9 13 12 14 0.279718 9 13 12 14 0.279718

D16 11 13 11 14 0.315883 11 11 13 14 0.270330

D18 13 14 12 17 0.291047 13 14 12 17 0.291047

D19 14 15 12.2 14 0.218410 12.2 15 14 14 0.170503

D21 29 30 27 30 0.357621 29 30 27 30 0.357621

FGA 19 25.2 19 24 0.324954 19 25.2 24 24 0.129379

THO1 7 9 6 7 0.322619 7 9 6 7 0.322619

VWA 17 18 17 17 0.364098 17 18 17 17 0.364098

joint 2.6978e-05 (1.0091e-05) 3.1643e-05 (1.332e-06)

Table 12: Prediction of two unknown genotypes for Graham data, with σ2 = 0.01. The
number in brackets is the product of individual marker probabilities. There is a classifica-
tion error in marker D7 (italicized).

sum prop semi-max

Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D3 16 17 15 17 0.963136 16 17 15 17 0.963136

D5 7 12 13 13 0.994966 7 12 13 13 0.994966

D7 11 11 10 11 0.659653 10 10 11 11 0.326069

D8 13 16 12 12 0.835225 13 16 12 12 0.835225

D13 9 11 8 9 0.981719 9 11 8 9 0.981719

D18 12 15 13 13 0.931912 12 15 13 13 0.931912

D21 30.2 31.2 30 32.2 0.979851 30.2 31.2 30 32.2 0.979851

FGA 23 25 22 24 0.985227 23 25 22 24 0.985227

VWA 16 18 17 17 0.967872 16 18 17 17 0.967872

joint 0.451047 (0.451327) 0.227689 (0.223093)
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Table 13: Prediction of two unknown genotypes for Graham data, using σ2 = 0.1. There
are now classification errors in six markers (italicized).

sum prop semi-max

Marker Genotype p1 Genotype p2 Probability Genotype p1 Genotype p2 Probability

D3 16 17 15 17 0.263132 16 17 15 17 0.263132

D5 7 13 12 13 0.311064 7 12 13 13 0.298917

D7 10 11 10 11 0.335654 10 10 11 11 0.133020

D8 12 13 12 16 0.310974 13 16 12 12 0.216863

D13 9 11 8 9 0.215735 11 11 8 9 0.133398

D18 12 13 13 15 0.300377 12 15 13 13 0.231450

D21 30.2 31.2 30 32.2 0.278259 30.2 31.2 30 32.2 0.278259

FGA 23 25 22 24 0.302807 23 25 22 24 0.302807

VWA 17 18 16 17 0.321188 16 18 17 17 0.262347

joint 1.7666e-05 (1.4983e-05) 6.9669e-06 (1.5486e-06)

5.3 An example using amelogenin

Our final example is taken from Appendix B of Clayton et al. [6] and illustrates the
importance of the amelogenin marker in the analysis of DNA mixtures when the individual
contributors are of opposite sex.

Peak area analysis of the amelogenin marker in DNA recovered from a condom used in
a rape attack indicated an approximate 2:1 ratio for the amount of female to male DNA
contributing to the mixture. Peak area information was available on six other markers, the
information is shown in Table 14; we shall refer to this as the Clayton data.

In Table 15 we show the results of separating the mixture using peak area information
only, without using information on the victim. All markers are correctly identified. Note
in particular that the genotypes for the marker THO are identified correctly. Clayton et
al. [6] were only able to do this after the victim’s profile was taken into account, because
without this information the alternative genotype combination ({7, 7}, {5, 5}) could also
have explained the observed peak areas with an approximate 2:1 imbalance in the contrib-
utors’ DNA. In our analysis we estimate that this alternative combination is around 258
times less likely than the correct designation.

Figure 9 shows the posterior distribution of the mixture proportion; the peak at around
0.65 corresponds to a mixture ratio of 1.86:1, in line with the approximate 2:1 estimated
in [6].
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Table 14: Clayton data showing mixture composition, peak areas and relative weights
together with the DNA profiles of both victim and suspect. For the marker D21 the allele
designation in brackets is as given in [6] using the Urquhart et al. [23] labelling convention

Marker Alleles Peak area Relative weight Suspect Victim

Amelogenin X 1277 0.8298 X XX

Y 262 0.1702 Y

D8 13 3234 0.6372 13

14 752 0.1596 14

15 894 0.2032 15

D18 14 1339 0.1462 14

15 1465 0.1714 15

16 2895 0.3612 16

18 2288 0.3212 18

D21 28 (61) 373 0.1719 28

30 (65) 590 0.2913 30

32.2 (70) 615 0.3259 32.2

36 (77) 356 0.2109 36

FGA 22 534 0.1547 22

23 2792 0.8453 23 23

THO 5 5735 0.2756 5

7 10769 0.7244 7 7

VWA 15 1247 0.1633 15

16 1193 0.1667 16

17 2279 0.3383 17

19 2000 0.3318 19
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Table 15: Predicted genotypes of both contributors for Clayton data with σ2 = 0.01.
Identical results are obtained using sum and semi-max propagation, with victim (p1) and
male suspect (p2) correct on every marker. The number in brackets is the product of
individual marker probabilities.

σ2 = 0.01

Marker Genotype p1 Genotype p2 Probability

Amelogenin X X X Y 0.983115

D8 13 13 14 15 0.903013

D18 16 18 14 15 0.993166

D21 30 32.2 28 36 0.945235

FGA 23 23 22 23 0.989090

THO 5 7 7 7 0.845031

VWA 17 19 15 16 0.992738

joint 0.701988 (0.691517)
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Figure 9: Posterior distribution of mixture proportion from Clayton data using no geno-
typic information, with σ2 = 0.01.
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6 Discussion

In the previous sections we have demonstrated how a probabilistic expert system can be
used for analysing DNA mixtures using peak area information, yielding a coherent way of
predicting genotypes of unknown contributors and assessing evidence for particular indi-
viduals having contributed to the mixture. The advantages of a probabilistic model-based
approach over numerical separation techniques such as Linear Mixture Analysis (LMA)
[9] and Least Square Deconvolution (LSD) [10] are that there is a natural and directly
interpretable quantification of all uncertainties associated with the analysis; in particular,
the posterior distribution of the mixture proportion can be computed. Furthermore, the
analysis is extendable to similar but different situations using the modularity and flexi-
bility of the PES approach. This includes complications such as more than two potential
contributors, multiple traces, indirect genotypic evidence, stutter, etc.

The examples considered have also demonstrated that there are issues which need
further consideration. In particular it appears that the performance of the system is
sensitive to large changes in the scaling factors we used to model the variation in the
amplification and measurement processes. This is a serious problem which needs attention.
Preliminary investigations seem to indicate that the variance factor depends critically on
the total amount of DNA available for analysis. As this necessarily is varying from case to
case, a calibration study should be performed to take this properly into account. In any
case we find it comforting that the system itself would warn against trusting an uncertain
prediction, by yielding an associated low classification probability.

Methods for diagnostic checking and validation of the model should be developed based
upon comparing observed weights to those predicted when genotypes are assumed correct.
Such methods could also be useful for calibrating the variance parameters σ2 and ω2. To
indicate a possible way ahead we note that the network can itself be used for predicting
peak weight given a hypothesized composition of the mixture and of the two contributors.
Table 16 gives the predicted peak weights for the Perlin data based on the repeat numbers
in the mixture composition, the true mixture composition, and on the suspect’s and victim’s
genotype. The last two columns show the limits of the 95% predictive interval [µa −
1.96τ, µa + 1.96τ ] for the weight. For this purpose we use the variance structure (2) as
only the marginal distribution of the peak weights are involved so the correlations do not
interfere. For a 95% predictive interval we might expect about one of the weights of the
table to lie outside of its predicted interval, as about 21 of the 31 intervals are independent
(the weights for each marker must add to one); all expected weights are within their
intervals, indicating that the variance is not too small.

The predicted peak weights are also useful for identifying measurement errors. For
example, if the predicted weight is of the same order of magnitude as the cut-off threshold,
the peak is likely to be missed. In future work when we incorporate artifacts this will be
especially useful for analysing mixtures with low copy number to distinguish noise from
signal.

Another issue to be further investigated is the possibility of using a model based on
gamma distributed absolute peak weights, avoiding the somewhat unfortunate fact that
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Table 16: Prediction of relative peak weight for Perlin data, using the mixture, the suspect’s
and the victim’s DNA composition.

Marker Allele Relative Weight Predicted relative weight

µa − 1.96τ µa + 1.96τ

D2 16 0.1339 0.0565 0.2435

18 0.2992 0.2378 0.4622

20 0.1947 0.0565 0.2435

21 0.3722 0.2378 0.4622

D3 14 0.5010 0.3840 0.6160

15 0.4990 0.3840 0.6160

D8 9 0.2832 0.2378 0.4622

12 0.1426 0.0565 0.2435

13 0.3829 0.2378 0.4622

14 0.1913 0.0565 0.2435

D16 11 0.6801 0.5909 0.8091

13 0.1607 0.0565 0.2435

14 0.1593 0.0565 0.2435

D18 12 0.1504 0.0565 0.2435

13 0.3290 0.2378 0.4622

14 0.3443 0.2378 0.4622

17 0.1764 0.0565 0.2435

D19 12.2 0.3109 0.2378 0.4622

14 0.3092 0.1909 0.4091

15 0.3799 0.2378 0.4622

D21 27 0.1289 0.0565 0.2435

29 0.3913 0.2378 0.4622

30 0.4798 0.3840 0.6160

FGA 19 0.4621 0.3840 0.6160

24 0.1561 0.0565 0.2435

25.2 0.3817 0.2378 0.4622

THO1 6 0.1268 0.0565 0.2435

7 0.4691 0.3840 0.6160

9 0.4041 0.2378 0.4622

VWA 17 0.7265 0.5909 0.8091

18 0.2735 0.1909 0.4091
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Gaussian distributions can take negative values. Ideally the method should be generalized
to deal with higher complexity such as the simultaneous analysis of several traces, an
unknown but large number of contributors, etc., and we have not as yet made a proper
investigation of the computational complexity issues associated.

We also will explore how to extend the model to handle Y-chromosome and mitochon-
drial DNA haplotype data. Finally, we emphasize that for the moment we have not dealt
with incorporating artifacts such as stutter, pull-up, allelic dropout, etc., but we hope to
pursue this and other aspects in the future. It may be that in incorporating such artifacts
our networks will become too complex for exact inference based on evidence propagation
in Bayesian networks, and that a Monte-Carlo simulation approach may be required.

Acknowledgement

This research was supported by a Research Interchange Grant from the Leverhulme Trust.
We are indebted to participants in the above grant and to Sue Pope and Niels Morling for
constructive discussions. We thank Caryn Saunders for supplying the EPG image used in
Figure 1. We also thank the associate editor and the referees for helpful comments.

References

[1] A. P. Dawid, J. Mortera, V. L. Pascali, and D. W. van Boxel. Probabilistic expert
systems for forensic inference from genetic markers. Scand. J. Stat., 29 (2002) 577–595.

[2] L. A. Foreman, C. Champod, I. W. Evett, J.A. Lambert, and S. Pope. Interpreting
DNA Evidence: A Review. Internat. Statist. Rev., 71 (2003) 473–495.

[3] J. Mortera, A. P. Dawid, and S. L. Lauritzen. Probabilistic expert systems for DNA
mixture profiling. Theoret. Pop. Biol., 63 (2003) 191–205.

[4] I. W. Evett, C. Buffery, G. Wilcott, and D. Stoney. A guide to interpreting single locus
profiles of DNA mixtures in forensic cases. J. Forensic Sci. Soc., 31 (1991) 41–47.

[5] B. S. Weir, C. M. Triggs, L. Starling, L. I. Stowell, K. A. J. Walsh, and J. S. Buckleton.
Interpreting DNA mixtures. J. Forensic Sci., 42 (1997) 213–222.

[6] T. M. Clayton, J. P. Whitaker, R. Sparkes, and P. Gill. Analysis and interpretation of
mixed forensic stains using DNA STR profiling. Forensic Sci. Int., 91 (1998) 55–70.

[7] P. Gill, R. Sparkes, R. Pinchin, T. Clayton, J. Whitaker, and J. Buckleton. Inter-
preting simple STR mixtures using allele peak areas. Forensic Sci. Int., 91 (1998)
41–53.

29



[8] M. Bill, P. Gill, J. Curran, T. Clayton, R. Pinchin, M. Healy, and J. Buckleton.
PENDULUM — a guideline - based approach to the interpretation of STR mixtures.
Forensic Sci. Int., 148 (2005) 181–189.

[9] M.W. Perlin and B. Szabady. Linear mixture analysis: a mathematical approach to
resolving mixed DNA samples. J. Forensic Sci., 46 (2001) 1372–1378.

[10] T. Wang, N. Xue, and R. Wickenheiser. Least square deconvolution (LSD): A new
way of resolving STR/DNA mixture samples. Presentation at the 13th International
Symposium on Human Identification, October 7–10, 2002, Phoenix, AZ, 2002.

[11] I. Evett, P. Gill, and J. Lambert. Taking account of peak areas when interpreting
mixed DNA profiles. J. Forensic Sci., 43 (1998) 62–69.

[12] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic

Networks and Expert Systems. Springer, New York, 1999.

[13] S. L. Lauritzen and F. Jensen. Stable local computation with conditional Gaussian
distributions. Statistics and Computing, 11 (2001) 191–203.

[14] Y. Torres, I. Flores, V. Prieto, M. Lopez-Soto, M. J. Farfan, A. Carracedo, and P. Sanz.
DNA mixtures in forensic casework: a 4-year retrospective study. Forensic Sci. Int.,
134 (2003) 180–186.

[15] J. M. Butler, R. Schoske, P. M. Vallone, J. W. Redman, and M. C. Kline. Allele fre-
quencies for 15 autosomal STR loci on U.S. Caucasian, African American and Hispanic
populations. J. Forensic Sci., 48 (2003) 908–911. Available online at www.astm.org.

[16] T. M. Clayton and J. S. Buckleton. Mixtures. In S. J. Walsh J. S. Buckleton, C.
M. Triggs, editor, Forensic DNA Evidence Interpretation, chapter 7, pages 217–274.
CRC Press, 2004.

[17] R. G. Cowell, S. L. Lauritzen, and J. Mortera. Identification and separation of DNA
mixtures using peak area information. Statistical Research Paper 25, Sir John Cass
Business School, City University London, Nov 2004.

[18] P. Gill, R. Sparkes, and C. Kimpton. Development of guidelines to designate allele
using an STR multiplex system. Forensic Sci. Int., 89 (1997) 185–197.

[19] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Dan Geiger and
Prakash P. Shenoy, editors, UAI ’97: Proceedings of the Thirteenth Conference on

Uncertainty in Artificial Intelligence, August 1-3, 1997, Brown University, Providence,

Rhode Island, USA, pages 302–313. Morgan Kaufmann, 1997.

[20] K. B. Laskey and S. M. Mahoney. Network fragments: Representing knowledge for
constructing probabilistic models. In Dan Geiger and Prakash P. Shenoy, editors, UAI

’97: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence,

30



August 1-3, 1997, Brown University, Providence, Rhode Island, USA, pages 302–313.
Morgan Kaufmann, 1997.

[21] A. P. Dawid. An object-oriented Bayesian network for estimating muta-
tion rates. In Christopher M. Bishop and Brendan J. Frey, editors, Pro-

ceedings of the Ninth International Workshop on Artificial Intelligence and

Statistics, Jan 3–6 2003, Key West, Florida, 2003. Available online at:
http://research.microsoft.com/conferences/AIStats2003.

[22] D. Cavallini and F. Corradi. OOBN for forensic identification through search-
ing a DNA profiles’ database. In Robert G. Cowell and Zoubin Ghahra-
mani, editors, Proceedings of the Tenth International Workshop on Artificial In-

telligence and Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados, pages 41–
48. Society for Artificial Intelligence and Statistics, 2005. Available online at:
http://www.gatsby.ucl.ac.uk/aistats.

[23] A. Urquhart, C. P. Kimpton, T. J. Downes, and P. Gill. Variation in short tandem
repeat sequences – a survey of twelve microsatellite loci for use as forensic identification
markers. Int. J. Leg. Med., 107 (1994) 13–20.

A Likelihoods from peak area information

All Bayesian networks in the present paper have a common structure, as outlined below:
The nodes corresponding to the observed relative peak weights R = (Ra, a = 1, . . . , A) are
all continuous. We are interested in the distribution P (D, M |R, E) where R denotes the
peak weight, E other types of evidence, e.g. evidence about genotypes of certain individuals,
M the nodes for the mean peak weights, and D the remaining discrete nodes in the network.

The mean peak weights are represented by discrete nodes with possible values µ =
(µ1, . . . , µA). Using Bayes’ formula, and the fact that R is conditionally independent of
(D, E) given M , it holds that

P (D, M |R, E) ∝ P (R |M)P (D, M, E).

Thus, the information in the relative peak weights enter the calculations only through the
peak weight likelihood

L(µ) = P (R |M = µ).

In the following we shall find a simple expression for this likelihood.
Consider now a vector X = (X1, . . . , XA) of independent and normally distributed

random variables with Xa ∼ N (µa, τ
2
a ), i.e. with joint density

f(x1, . . . , xd |µ, T ) = (2π)−d/2
A
∏

a=1

τ−1
a exp

{

−
∑

a

(xa − µa)
2

2τ 2
a

}
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where we have let µ = (µ1, . . . , µA) and T a diagonal matrix with τ 2
a as diagonal elements,

i.e. T = diag(τ 2
1 , . . . , τ 2

A). We recall that
∑

a µa = 1.
The distribution of the sum S =

∑

a Xa is normal S ∼ N (1, τ 2) with τ 2 =
∑

a τ 2
a and

the conditional distribution of X given S = 1 is itself multivariate normal with the same
mean vector µ and covariance matrix T ∗, where

τ ∗

aa =
τ 2
a (τ 2 − τ 2

a )

τ 2
, τ ∗

ab =
−τ 2

a τ 2
b

τ 2
.

The density of the conditional distribution can now be calculated as

f ∗(x1, . . . , xA−1 |µ, T ∗) ∝
f(x1, . . . , xA |µ, T )

fS(1 | τ 2)
∝ τf(x1, . . . , xA |µ, T ), (4)

for xA = 1 −
∑A−1

a=1 xa. If we consider the case

τ 2
a = σ2µa + ω2,

i.e. the variance structure in (3), we note that

τ 2 =
∑

a

τ 2
a = σ2 + Aω2

is constant in µ. Also the covariance matrix T ∗ is

τ ∗

aa = σ2µa(1 − µa) + ω2 + o(ω2), τ ∗

ab = −σ2µaµb + o(ω2),

which, ignoring terms o(ω2) which are an order of magnitude smaller than ω2, has precisely
the form (2) used in our model. If we ignore measurement error by setting ω2 = 0, the
entries in T ∗ are exactly given by (2).

It follows that to an excellent approximation — exact for ω2 = 0 — we can calcu-

late the correct peak weight likelihood based on T ∗ by using the variance structure T with

independence:

L(µ) = f ∗(x1, . . . , xA−1 |µ, T ∗) ∝ f(x1, . . . , xA |µ, T ),

which justifies the use of (3) in the calculations.

B Description of the network classes in the object-

oriented network

Below we describe the component networks (together with their internal structure) which
are used in the construction of the master network. In what follows, bold will indicate
a network class, and teletype will indicate a node. In the figures, instances of a certain
class are represented by a rounded rectangle, discrete nodes have a single outline, whereas
continuous nodes have a double outline. Interface nodes are represented with a grey ring;
input nodes having a dotted outline and output nodes having a solid outline. Also, dark
grey nodes will indicate where possible evidence might be inserted and black nodes are
target nodes or nodes of interest where results will be read.
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B.1 The founder class

The class founder of Figure 10 contains a single node founder with the relevant repertory
of alleles as its states, and an associated probability table describing their gene frequencies.

founder

Figure 10: Network founder for founder gene.

For illustration, we show marker FGA having observed alleles coded A to C and the
aggregation of all unobserved alleles coded as x. The probability table is shown in Table 17.

Table 17: Gene frequencies for marker FGA as reported in Evett et al. (1998).

Allele A B C x

Frequency 0.187 0.165 0.139 0.509

B.2 The genotype class

The class gt in Figure 11 represents an individual’s genotype gt, formed by the unordered
pair of paternal and maternal genes, {pg, mg}. (Input nodes pg and mg are copies of node
founder of class founder.) The paternal and maternal genes, pg and mg, are chosen inde-
pendently from the same population whose allele frequencies are assumed known. Output
node gt is the logical combination of input nodes pg and mg.

B.3 The query class

The class whichgt of Figure 12 describes the selection between two genotypes.
If the Boolean node query? is true, then output node, outgt, will have identical

genotype to ingt; otherwise it will be identical to othergt. This is written in the Hugin

expression language as: outgt := if(query? == true, ingt, othergt).4

4The function if(C, x, y) takes the value x if condition C is satisfied, otherwise y.
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mgpg

gt

Figure 11: Network gt for genotype.

outgt

ingt

query? othergt

Figure 12: Network whichgt for selecting a genotype.
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B.4 The joint genotype

The network class jointgt of Figure 13 represents the combined genotype of two indi-
viduals, p1 and p2. Node p1gt&p2gt is simply the logical combination of the two input
genotypes in p1gt and p2gt.

p2gtp1gt

p1gt&p2gt

Figure 13: Network jointgt for genotype pairs.

B.5 The number of alleles

The class nalleles shown in Figure 14 counts the number, varying from 0 to 2, of a certain
allelic type in a genotype. For allele A , nA := if(gt == AA, 2, if (or (gt == AB, gt ==
AC, gt == Ax), 1, 0)). Similarly, for B, C and x. This class models the n(i)

a variables in
(1).

nA

gt

Figure 14: Network nalleles for counting the number of alleles.
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B.6 The weight of an allele in the mixture

The class alleleinmix shown in Figure 15 shows whether a certain allelic type (repeat
number) is in the mixture and computes its mean contribution to the peak area of the
mixture.

n2An1A

p2gtp1gt

meanA

frac

Ainmix?

Figure 15: Network alleleinmix for alleles in mixture.

Input nodes p1gt and p2gt, the genotypes of the two people, p1 and p2, contributing to
the mixture, have identity links to the input node gt in the two instances of class nalleles,
n1A and n2A. The Boolean node Ainmix? is true if at least one of the two contributors
has allele A. Thus, Ainmix? := if(and (n1A nA == 0, n2A nA == 0), false, true), where
n1A nA and n2A nA refer to the output nodes of the two instances of class nalleles, n1A
and n2A. (Similar instances are built for the other alleles.) Repeat number information is
entered and propagated from these nodes. For example, if the mixture contains allele A,
node Ainmix? is set to true.

Input node frac represents the proportion of DNA contributed by p1, denoted by θ
in § 2. To enable evidence propagation in the Bayesian network to be possible, we model
this continuous variable by an approximating discrete variable. In our hand-built Hugin

networks we used a coarse level of discretization, with the states of node frac put on a
discrete scale ranging from [0, 5] for convenience. The scale of node frac can easily be
modified to a finer grid, though some conditional probability tables dependent on the grid
size can get quite large and tedious to fill in correctly by hand if the grid is too fine. Output
node meanA:= n1A nA * frac + n2A nA * (5 - frac). This differs from the expression for the
mean in (1) by a scale factor of 10 which is appropriately corrected for throughout.
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B.7 The peak weight

The class peakweight shown in Figure 16 models the observable peak weight as in (1).

mean

weight

weightobs

Figure 16: Network peakweight for peak weight.

The input node mean is identified, for example, with output node meanA of class al-

leleinmix. The intermediate continuous node weight represents the unobserved true peak
weight. This node has a conditional Gaussian distribution with mean given by the value of
the discrete parent node mean and variance equal to 10∗0.01∗mean, representing variations
in the amplification process, cf. § 2. The observed peak weight is modelled by the continu-
ous node weightobs to allow for additional measurement error of the true weight. When
using peak area information the value of the relative peak weight is inserted as evidence
in the node weightobs.

B.8 The target class

The class target shown in Figure 17 has two Boolean output nodes p1=s? (p2=v?) with
true, false states, representing whether contributor p1 (p2) is the suspect (victim) or not.
The black target node is the logical conjunction of the two nodes p1=s? and p2=v?.
These nodes are given a uniform prior distribution so that target node has a uniform
prior distribution over its states. This enables the computation of the likelihood ratio as
described in [3].
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p1=s? p2=v?

target

Figure 17: Network target.

B.9 The marker class

The class marker in Figure 18 is an upper level network containing several instances of the
classes defined above. This class is made to represent information related to a particular
marker. Here it is illustrated for a marker having three alleles represented in the mixture.
Input nodes spg, smg, u1pg, u1mg, vpg, vmg, u2pg and u2mg are all copies of node founder
of class founder; u1 and u2 being two unspecified individuals. Input nodes p1=s? and
p2=v? are identified with the corresponding output nodes of class target. The nodes sgt,
u1gt, vgt and u2gt are all instances of class gt. Evidence on the suspect’s and victim’s
genotypes is entered in the network in the nodes sgt and vgt. Nodes p1gt and p2gt are
instances of whichgt and when p1=s? is true (false), p1gt will be identical to sgt (u1gt).
A similar relationship holds between nodes p2=v?, p2gt, vgt and u2gt. The node jointgt
is an instance of jointgt; Amean, Bmean, Cmean and xmean are instances of alleleinmix;
Aweight, Bweight, Cweight and xweight are instances of peakweight. Input node frac

is identified with the corresponding node in the master network described below.

B.10 The master network

Figure 19 gives the master network used for both identification and separation of DNA
mixtures from two contributors. It refers to the data from [11] shown in Table 3.

D8, D18, FGA, and THO1 are all instances of marker; D21 and VWA are instances of a
simple modification of class marker and the other network classes it calls, in order to
account for 4 observed alleles. D8, D18, FGA, THO1, D21 and VWA each have 8 founder

instances with their appropriate gene frequencies as input to the 8 input nodes of class
marker. The frac node is connected to all the markers showing their dependence via
this quantity. target, an instance of class target, is linked to each marker via its output
nodes p1=s? and p2=v?. Once constructed, the master network can be used to insert
and propagate case evidence in the appropriate internal nodes, and the marginal posterior
probability distributions of the quantities of interest can be read from the corresponding
nodes.
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jointgt

xweightCweightBweightAweight

xmeanCmeanBmeanAmean

p2gtp1gt

u2gtvgtsgt u1gt

frac

u2pg u2mgvpg vmgu1pg u1mgspg smg

p2=v?p1=s?

Figure 18: Network marker with three observed allele peaks.
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Figure 19: Master network for identification and separation of mixtures.
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B.11 Amelogenin marker

To build a network for amelogenin one needs to make the following changes to the previous
classes. No founder class is needed and the genotype class has a single output node gt

with states XX for female and XY for male, with equal prior probabilities. The query

and jointgt classes only need trivial modifications to reduce their state spaces. The allele
counting class nalleles, for a male contributor, gt== XY, (for a female contributor, gt==
XX) has nX==1 (2) and nY== 1 (0). The class alleleinmix of §B.6, is modified so that
Xinmix? is set to true. All other network classes remain unchanged.

C Description of the networks generated by Maies

The Bayesian network generated by Maies may be considered equivalent to an “unfolded”
version of the object-oriented networks described in Appendix B. An example of a network
generated for a single marker with two alleles observed in the mixture is shown in Figure 20.
The structure is similar to the network shown in Figure 18, and like the object-oriented
network described earlier there are several distinct modules of repetition that can be seen
in the figure: indeed it is this repetitive structure that makes it possible for Maies to
create the much larger Bayesian networks required to analyse mixtures on several markers.
We now describe these various structures and how they interrelate.

C.1 Founding people

Maies currently assumes that DNA from two individuals are in the mixture. Thus it
sets up nodes for four founding individuals who are paired up, prefixed by s (for suspect),
v (for victim), and u1 and u2 representing two unspecified persons from the population.
Corresponding to each of these individuals is a triple of nodes representing their genotype
on the marker, and the individuals’ paternal and maternal genes. They are joined up as
in Figure 11 and their function is the same. The probability tables associated with the
maternal and paternal genes contain the allele frequencies of the observed alleles, whilst the
conditional probability table associated with the genotype node is the logical combination
of the maternal and paternal gene.

C.2 Actual contributors to the mixture

The genotypes on the marker of the two individuals p1 and p2 whose DNA is in the mixture
are the nodes labelled p1gt and p2gt. Node p1gt has incoming arrows from nodes u1gt,
sgt and a (yes,no) valued binary node labelled p1 = s?. The function of this latter node
is similar to the query? node of Figure 12, namely to set the genotype of node p1gt to be
that of sgt if p1 = s? takes the value yes, otherwise set the genotype of node p1gt to
be that of u1gt. An equivalent relationship holds between the genotype nodes p2gt, vgt,
u2gt and p2 = v?.
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u2pgu2mgvpgvmgspgsmgu1pgu1mg

u1gt sgt vgt u2gt

p2 = v?p1 = s?

p2gttargetp1gt

p2 xp2 9p2 8

jointgt

p1 xp1 9p1 8

x inmix ?

9 inmix ?

8 inmix ?

x weightobs

x weight9 weight

8 weightobs

8 weight

9 weightobssym

p1 frac

Figure 20: The structure of a Bayesian network generated by MAIES for a single marker,
in which two allele peaks (8 and 9) were observed.
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The node labelled target represents the four possible combinations of values of the
two nodes p1 = s? and p2 = v? as in Figure 17 and described in §B.8.

The network also has a node representing the joint genotypes of individuals p1 and p2,
which is labelled jointgt, with incoming arrows from p1gt and p2gt; the function of this
part of the network is equivalent to the object shown in Figure 13.

C.3 Allele counting nodes

On the level below the genotype nodes for p1 and p2 is a set of nodes representing the
number of alleles (taking the value of 0, 1 or 2) of a certain type in each individual. Thus,
for example, the node p1 8 counts the number of alleles of repeat number 8 in the genotype
of individual p1 for the given marker: this value only depends upon the genotype of the
individual p1 and hence there is an arrow from p1gt to p1 8. These nodes model the n(i)

a

variables introduced in (1).

C.4 Repeat number nodes

On the level below the allele counting nodes are the repeat number nodes, labelled 8 inmix?,
9 inmix? and x inmix?. These are (yes,no) binary valued nodes representing whether
or not the particular alleles are present in the mixture: thus for example allele 8 is present
in the mixture if either of the allele counting nodes p1 8 or p2 8 takes a non-zero value.
For the node x inmix? the x refers to all of the alleles in the marker that are not observed.
When using repeat number information as evidence the repeat number nodes present in
the mixture will be given the value yes; all other nodes, including x inmix?, will be given
the value no.

C.5 True and observed weight nodes

These nodes are represented by the rounded rectangle shapes. The nodes 8 weight,
9 weight and x weight represent the true relative peak weights r8, r9 and rx respec-
tively of the alleles 8, 9 and x in the amplified DNA sample; the nodes 8 weightobs,
9 weightobs and x weightobs represent the measured weights. The observed weight
is given a conditional-Gaussian distribution with mean the true weight, and variance
ω2. Each true-weight node is given a conditional-Gaussian distribution with mean µa =
{θn(1)

a +(1− θ)n(2)
a }/2, where the fraction θ of DNA from p1 in the mixture is modelled in

the network by a discrete distribution in the node labelled p1 frac. The variance is taken
to be σ2µa, as specified in § 2.

When using peak area information as evidence the nodes representing the observed
weights will have their values set to the relative peak weights. The sym node is only used
for separating a mixture of two unknown contributors, as described in § 5.2.
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C.6 Networks with more than one marker

The network displayed in Figure 20 generated by Maies is for a single marker; for mixture
problems involving several markers the structure is similar but more complex because the
number of nodes grows with the number of markers (in the Graham example, see § 4.1,
there are 325 nodes). In such a network the nodes shaded in Figure 20 occur only once.
The unshaded nodes are replicated once for each marker, with each node having text in
their labels to identify the marker that the allele or genotype nodes refer to. There will
also be extra repeat number, allele counting and allele weight nodes in each marker having
more than two observed alleles in the mixture, extending the pattern for the one-marker
network in the obvious manner.
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