1,264 research outputs found
Photo-antagonism of the GABAA receptor
Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation
Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications
Optical techniques are finding widespread use in analytical chemistry for
chemical and bio-chemical analysis. During the past decade, there has been an
increasing emphasis on miniaturization of chemical analysis systems and
naturally this has stimulated a large effort in integrating microfluidics and
optics in lab-on-a-chip microsystems. This development is partly defining the
emerging field of optofluidics. Scaling analysis and experiments have
demonstrated the advantage of micro-scale devices over their macroscopic
counterparts for a number of chemical applications. However, from an optical
point of view, miniaturized devices suffer dramatically from the reduced
optical path compared to macroscale experiments, e.g. in a cuvette. Obviously,
the reduced optical path complicates the application of optical techniques in
lab-on-a-chip systems. In this paper we theoretically discuss how a strongly
dispersive photonic crystal environment may be used to enhance the light-matter
interactions, thus potentially compensating for the reduced optical path in
lab-on-a-chip systems. Combining electromagnetic perturbation theory with
full-wave electromagnetic simulations we address the prospects for achieving
slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap
based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear
in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages
including 8 figure
Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation
We develop a theory for describing frictional drag in bilayer systems with
in-plane periodic potential modulations, and use it to investigate the drag
between bilayer systems in which one of the layers is modulated in one
direction. At low temperatures, as the density of carriers in the modulated
layer is changed, we show that the transresistivity component in the direction
of modulation can change its sign. We also give a physical explanation for this
behavior.Comment: 4 pages, 4 figure
Angle dependence of Andreev scattering at semiconductor-superconductor interfaces
We study the angle dependence of the Andreev scattering at a
semiconductor-superconductor interface, generalizing the one-dimensional theory
of Blonder, Tinkham and Klapwijk. An increase of the momentum parallel to the
interface leads to suppression of the probability of Andreev reflection and
increase of the probability of normal reflection. We show that in the presence
of a Fermi velocity mismatch between the semiconductor and the superconductor
the angles of incidence and transmission are related according to the
well-known Snell's law in optics. As a consequence there is a critical angle of
incidence above which only normal reflection exists. For two and
three-dimensional interfaces a lower excess current compared to ballistic
transport with perpendicular incidence is found. Thus, the one-dimensional BTK
model overestimates the barrier strength for two and three-dimensional
interfaces.Comment: 8 pages including 3 figures (revised, 6 references added
Cancer risk among users of neuroleptic medication: a population-based cohort study
It has been suggested that neuroleptic medication may decrease cancer risk. We compared cancer risks in a population-based cohort study of 25 264 users (⩾2 prescriptions) of neuroleptic medications in the county of North Jutland, Denmark, during 1989–2002, with that of county residents who did not receive such prescriptions. Statistical analyses were based on age-standardisation and Poisson regression analysis, adjusting for age, calendar period, COPD, liver cirrhosis or alcoholism, use of NSAID, and, for breast cancer, additionally for use of hormone therapy, age at first birth, and number of children. Use of neuroleptic medications was associated with a decreased risk for rectal cancer in both women and men (adjusted IRRs of 0.61 (95% confidence interval, 0.41–0.91) and 0.82 (0.56–1.19), respectively) and for colon cancer in female users (0.78; 0.62–0.98). Some risk reduction was seen for prostate cancer (0.87; 0.69–1.08), but breast cancer risk was close to unity (0.93; 0.74–1.17). Overall, treatment with neuroleptic medications was not related to a reduced risk of cancer, but for cancers of the rectum, colon and prostate there were suggestive decreases in risk
Temperature Dependence of the Flux Line Lattice Transition into Square Symmetry in Superconducting LuNiBC
We have investigated the temperature dependence of the H || c flux line
lattice structural phase transition from square to hexagonal symmetry, in the
tetragonal superconductor LuNi_2B_2C (T_c = 16.6 K). At temperatures below 10 K
the transition onset field, H_2(T), is only weakly temperature dependent. Above
10 K, H_2(T) rises sharply, bending away from the upper critical field. This
contradicts theoretical predictions of H_2(T) merging with the upper critical
field, and suggests that just below the H_c2(T)-curve the flux line lattice
might be hexagonal.Comment: 4 pages, 3 figure
Refractive-index sensing with ultra-thin plasmonic nanotubes
We study the refractive-index sensing properties of plasmonic nanotubes with
a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is
described by both the usual Drude model and the nonlocal hydrodynamic model to
investigate the effects of nonlocality. We derive an analytical expression for
the extinction cross section and show how sensing of the refractive index of
the surrounding medium and the figure-of-merit are affected by the shape and
size of the nanotubes. Comparison with other localized surface plasmon
resonance sensors reveals that the nanotube exhibits superior sensitivity and
comparable figure-of-merit
Producing valid statistics when legislation, culture, and medical practices differ for births at or before the threshold of survival: Report of a European workshop
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Downloa
- …