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We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface,
generalizing the one-dimensional theory of Blonder, Tinkham, and KlapiBijk). An increase of the mo-
mentum parallel to the interface leads to suppression of the probability of Andreev reflection and increase of
the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the
semiconductor and the superconductor the angles of incidence and transmission are related according to the
well-known Snell’'s law in optics. As a consequence there is a critical angle of incidence above which only
normal reflection exists. For two- and three-dimensional interfaces a lower excess current compared to ballistic
transport with perpendicular incidence is found. Thus, the one-dimensional BTK model overestimates the
barrier strength for two- and three-dimensional interfaf86163-18209)01615-X]

I. INTRODUCTION Bagwell’ and De Raedt, Michielsen, and Klapwijkave also
considered the angle dependence in their applications of the
An electronlike quasiparticle incident on a normal BdG formalism to the transport properties of NS interfaces.
conductor—superconductdNS) interface from the normal However, except for the 1D work of Blonder and Tinkiam
side may become Andreev reflected into a holelike quasipathe above-mentioned papers all focused on the case where
ticle with reversal of the signs of all three velocity compo- there is no mismatch between densiti@sd hence Fermi
nents(retroflection and of the energyrelative to the Fermi  wavelengths or between effective band masses of the two
level) as shown by AndreelLater, Blonder, Tinkham, and materials forming the NS junction. In the case of SNS junc-
Klapwijk? (BTK) calculated the scattering probabilities at ations, Kupriyanov® included effects of the parallel degree of
NS interface within a model where the scattering at the infreedom and different Fermi velocities of the N and S re-
terface was represented by a delta-function potential barriegions in his application of the Eilenberger equations to the dc
The calculations were based on the Bogoliubov—de Gennefosephson current in junctions with clean interfaces. Using
(BdG) formalism;’ for a one-dimensional(1D) geometry the BAG formalism, the effect of different Fermi velocities
thus ignoring all effects due to quasiparticles with a momenyng effective masses was also considered by Stéuand
tum parallel to the interface. Kummel! and Chrestin, Matsuyama, and Mérkin their

The BTK model has been widely used by experimentalisi,; merical studies of the dc Josephson current in Nb-InAs-Nb
to model normal-metal—-superconductor junctions, and it ha nctions

despite of its inherent approximations been quite successf Since much of the development in the recent years has

in describing the main features of these devices. The qualltéeen in structures where superconductors are combined with

of the junction interface has conveniently been parametrizesemiconoluctors the qoal of this paper is an analvtical stud
in terms of the normalized delta-function barrier strength. . ' 9 . Paper Is an y udy
A more complete theory was developed by Ardaling of the importance of the different quasiparticle propagation
yin the two materials, when the degrees of freedom parallel to

nonequilibrium Green’s-function techniques. The theory b . ) .
Arnold furthermore takes the three-dimensiot@D) nature the interface and effects of the unequal Fermi velocities and

of the interface into account. However, the resulting expresE€Mi wavelengths are taken into account. This is motivated
sions are complicated and require substantial numericdly the observation that Andreev scattering cannot occur
work. Generalization of the BTK model to tunnel barriers @bove a critical angle where the momentum can no longer be
other than delta-function scattering potentials has been dorf@nserved. The critical angle depends on the ratio of the
by Kupka in a number of papet$.Recently, Kupkégener-  carrier density of the semiconductor to the density of the

alized the more realistic tunnel barrier model to include thesuperconductor. Therefore, one may expect larger differ-
angel dependence of the scattering. He found that by treatingnces between 1D and 2D or 3D junctions for the case of a
the scattering problem in the correct three-dimensional picfinite Fermi wave-vector mismatch, which is indeed what we

ture, the effective Andreev scattering is reduced and the noffind.

mal scattering probability is enhanced. Chaudhuri and The effect of the angle dependence of the Andreev scat-
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tering probability is however somewhat suppressed by the 1 . 1 .
fact that the current is carried mostly by particles incoming  J, =1 Im[ u*(r) ——vu(r)—v*(r) —/——Vo(r).
perpendicular to the interface in 2D or at angle of 45° in 3D. m*(r) m*(r)

Therefore, we suggest an experiment where the angle depen- )
dence of Andreev scattering is probed in a more direct fash-

ion, namely a mesoscopic device which explores the baIIistiq_he BdG equations and the conservation of the probability

motion of quasiparticles and where the angle of incidence rrent density form the basis for our treatment of scatterin
can be varied. Such a device is possible due to the advan08$ density i ) tering
guasiparticles at the NS interface. Equati@nis used in

in fabrication of mesoscopic semiconductor-superconducto? ) . ) )
interfaces(see e.g., Ref. 23which have made it possible to callculatmg sc_a_t'Ferlng amplltude§ and the corresponding scat-
study Andreev scattering in the ballistic regime. tering probabilities are found using E(§).

The paper is organized as follows: In Sec. Il, the BdG
formalism is introduced, and in Sec. Ill, the scattering prob-
abilities at the interface are calculated. These scattering prob- 1ll. SCATTERING OF QUASIPARTICLES AT A NS
abilities are used in Sec. IV to calculate current-voltage char- INTERFACE

acteristics and related quantities. In Sec. V an experiment is W id | NS interf Ving i |
suggested and, finally, in Sec. VI discussions and conclu- Ve consider a planar NS interface lying in tg-plane at

sions are given. z=0 with a semi-infinite nonsuperconducting material for
<0 and a semi-infinite superconductor for0. The super-
conducting order parameter is assumed to vary in space only

IIl. THE BOGOLIUBOV —de GENNES FORMALISM along thez direction. In order to solve the BdG equations, we
The BdG equations include only scattering at the NS interface. Following BTK,
we model the scattering at the interface by a delta-function
- otential
o 20 )¢< )=E(r) & p
- ry= r
A*(r)  —Hz(r)

U(r)=Hda(2), 4
provide a microscopic formalism for studying inhomoge-

neous superconductors and NS interfateigre, A(r) is the ] ] ] o
pairing potential and%o(r) is the Hamiltonian. In a general whereH is the strength of the potential barrier. For simplic-

nonequilibrium situation, the Hamiltonian includes either a'ty' we neglect the phase of the pairing potential since only

time-dependent vector potential or a spatially dependent scéhe absolute value IS important fpr the conS|de.red geometry.
lar potential. However, we follow BTKRef. 2 and neglect Furthe_rr_nore, to a}v0|d self—conslstent calculations, we take
the effect of a finite bias on the scattering probabilities,t€ Pairing potential to be zero in the normal conductor and
which is justified if the height of the tunnel barrier is much Uniform in the superconductor, i.e.,

higher than the applied voltage and/or energy of the carriers

(relative to the Fermi levef For an interface where the po-

sition of the conduction band and the effective mass change A(r)=24,0(2), )
across the interface, we use the effective mass

approximatioh**° _ _
whereAj is the BCS value of the energy gap a@qz) is a

Heaviside function. Similarly for the effective masses of the
@Jru(r)_lu, 2) two materlgls, we assume that the mass changes abruptly
m*(r) across the interface

2

7:[0(I’)= _@2

where U(r) is total electrostatic potential, and is the

chemical potential. This approximation describes the spatial m*(r)=mNVe(-z)+m90(z), (6)

dependence of the dispersion relation, and the form of the

Hamiltonian ensures conservation of the probability current.

For a discussion of justifications of this approach, see Refsvherem®™ andm(® are the effective masses of the normal

14 and 15 and references therein. We assume a parabolionductor and the superconductor, respectively. Equations

dispersion so that the effective mas$ does not depend on (4)-(6) represent the simplest forms &f(r), A(r), and

energy(or momentum m*(r) still capturing the main physics of the NS interface.
The solutions to Eq.1l) are vectors in the so-called Due to the simple form of the NS barrier potential, the

electron—hole spacéNambu space (r)=[u(r),v(r)], pairing potential and the effective mass, we can separate the

whereu(r) is the electronlike quasiparticle amplitude satis-variables and express the solutions in the parallel direction as

fying an ordinary electronlike Schdinger equation and(r)  plane waves, i.e.y™9)(r)=exgi(kMx+k{Sy)]yMNS)

is the holelike quasiparticle amplitude satisfying a time-Xx(z), where the superscript (N,S) refers to the nonsuper-

reversed Schidinger equation. In electron—hole space, aconducting or superconducting sides, respectively. Substitut-

probability current density can be associated with the wavéng this Ansatz into Eq(1), yields the effective BdG equa-

function, and is given 4 tions for thez direction
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hZ 92
- —_, (NS

NS 572 +H8(2)— uly Ao0(2)

P W(2)=Ey(2), W)
S —_ , (NS
AoO(2) SmNS 372 +H(2Z) = pegt
|
where the effective chemical potential is defined as potential, which depends on the parallel momentum accord-

ing to Eq.(8).

2

h
per S =M= LS (KM, @)

We follow BTK and consider an electronlike quasiparticle
incident on the NS interface from the normal side. At the
interface it has an amplitudeof undergoing Andreev reflec-

Equation(7) is mathematically identical to the 1D BdG tion, b of normal reflectionc of normal transmission, andl
equations considered by BTK, and, therefore, we expeabf Andreev transmission. The scattering amplitudes are ob-
similar results for the scattering probabilities. We adopt thetained by matching the scattering states at the NS interface,
notation of BTK(Ref. 2 and all formulas for the eigenstates, using the appropriate boundary conditions for a delta-
scattering states, wave vectors(andk™) etc. are equiva- function potential barrie(see, e.g. Refs. 14 and )16The
lent to those of BTK, but with the important difference that matching results in following linear system determining
the chemical potential is replaced by an effective chemicad, b, ¢, andd

0 —Up —Ug _1
0 —vo Up a 0
0 2H gt Ck* k™ b .
2H - k* k™ d At om®
AL I —i——vg i—=u 0
52 N m® % e °

Though complicated, the exact scattering probabilities cafhe 1D expressions far™ andk™ are approximated by cas
now be found and numerical results for different values Ofprojection factors. At low temperaturesE/u™

the__effecl:t7ive chemical potential have been givgn tg_r_ﬁnd_ - /—ZEZ_AO/M(S)<1, and therefore, we apply the Andreev
Gyorffy.~" However, the calculations may be simplified sig- ot — = — (S) g — (N

ficantly terials with a hiah Fermi dapprOX|mat|on.k =k~ =k;>” andg"=q~ =k; "’ . For val-
nimicantly for matenals with a nigh =ermi energy comparead, of uN'S) relevant for normal metals and low-temperature

to the temperatures or bias voltages of interest. In this "m"superconductors this approximation is valid for angles of in-

transport only takes place near the Fermi level. cidenced= m/2. Semiconductors have much lower Fermi en-

We choose polar coordinates and allow for a Fermi veloCe,gies as compared to those of normal metals, but, even for

ity mismatch by considering a wave vector on the normakr/1__1/50 the approximation is reasonable. For angles in
side given byk™=k{M(sin6dcos¢,sinfsing,cost) and a  the vicinity of 6~ /2 the approximation becomes inaccu-
wave vector on the superconducting side VWF’IS)| =k(FS). rate. However, quasiparticles with vanishing perpendicular
The boundary conditions are satisfied onlykff’=k(®  momentum do not contribute significantly to the perpendicu-
and k§N)=k(yS), as dictated by the translational invariance lar current and their effect in the IV curves and related quan-
along  the interface. This means that k§5) tities will thus not be important for semiconductors either.

. . .. We have in fact checked this for the excess current by nu-
— k(S 12 . -
.kF 1 rkS'SZ 0, Swhere the Fermi momentum ratio is merically solving Eq(16) and found less than a half percent
given byr, =kM/k&) . The wave vectors on the normal con-

deviations for the GaAs two-dimensional electron gas
ducting side can now be written asq®  (2DEG) considered in Fig. 2. With these approximations the
=kF(N)\/co§ 6+E/u™ and on the superconducting side we amplitudes become

similarly getk™ =k{/(1-rZsir? )+ JEZ— A3/ u®. This

way of including the angle dependence is in accordance with

Refs. 6, 8, 11, 12, 17, and 18 but differs from the approach of UoVo
Chaudhuri and Bagwéllin which the angle corrections to y

(10
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Z \? 1-T?? Z where we definey=u3+ (u3—v2)z2(6), and where
(Ud—v3)|T + T 07 1T0 TOTelt
cosy al'r coy
b=— 5 ; Zeﬁ(e)z\/F(G)(Z/coso)er[F(G)rv—1]2/41“(0)rv
(11 (14)
’ 1+Fr—iF\/F z ) is an effective barrier strengt,=v™/v is the Fermi
o= %2 coy (12) velocity ratio andl’(6) =cos/\/1—rZ sir?6. The dimension-
4 less barrier strengtlz=H/# \/vF( ]50,:(35 was introduced by
7 1-Tt Blonder and Tinkharfl.
ivO(F\/F——i ) In order to obtain the scattering probabilitiés B, C,
d= cosy 2 (13) and D we use the conservation of the probability current
0% ' density, Eq.(3). For thez direction this yields

2 |2 2 |2
L= [af' + b + O(1E| — Ag) el —10l 2 4 o1y — ag) el =10 e
N~ N~ N Fr . N Fr ,
A B — > (15

It turns out that the scattering probabilities of the BTK abilities including the possibility of a Fermi velocity mis-
model can still be applied provided that the dimensionlesgnatch are summarized in Table I. We conclude that the scat-
barrier strength is replaced by the introduced effective barrietering probabilities of the BTK model still apply, provided
strength given in Eq(14). For perpendicular incidenced( that the dimensionless barrie( strength is replaced by an
=0) this result agrees with the BTK result,1) (Ref. 2  angle-dependent effective barrier strength.
and the Blonder—Tinkham resdlihich includes the possi- _ AS the angle of incidence is increased, we observe an
bility of a Fermi velocity mismatch. For a general angle of increasing effective barrier strength and therefore Andreev

incidence and matching Fermi velocities and Fermi moment&€flection ishsluppresshed V‘;]he” the pdaralllel momeir%:um be-
(r,=r=1) the result reduces to that obtained by Kupka. cOMes much larger than the perpendicular momentum.

As mentioned, the wave vectors of the transmitted wave:T;he same way, normal reflection increases when the parallel

have the formk(zs)=k(Fs)\/sti2—n26. The square root de- momentum increases. Nevertheless, we still have unit prob-

fines a critical angel of incidencg,, above which the solu- N S
tions are evanescent and below which we have propagating
waves, i.e. §.=arcsin (1f,) for r,>1. The physical reason 4 \@\
for the critical angle is that the parallel momentum exceeds | = ™~ GZ\‘\
the Fermi momentum of the superconductor and thus mo- B,
mentum cannot be conserved. K1 there is no critical
angle due to the parallel momentum not being con-
served. Going beyond the Andreev approximation intro-
duces another energy-dependent critical angﬁ% normal reflection Andreev reflection
=arcsin\/1—E/,u”5 caused by the wave vectgr of the
Andreev scattering state being imaginafyHowever, the
later critical angle has little consequences for our results for
the same reasons as when we discussed the validity of the

Andreev approximation. In Sec. V, we suggest how the angle
dependence may be probed. 0 GZ\'\ /ﬂet

The directions of the reflected and transmitted waves can =~~~ [~ \.\29
t

be obtained by considering the probability current density
and the result is sketched in Fig. 1. The angle of reflecfion
coincides with the angle of incidencg and the angle of
transmission is given by transmission without branch-crossing transmission with branch-crossing

sing,=r,siné (16) FIG. 1. Directions of the transmitted and reflected waves in real
space. The full dots@®) represent quasiparticles of predominantly
in analogy with Snell’s law in optics as it was also found by electronlike character and the open do®)(represent quasiparti-
Kupriyanovi® The general results for the scattering prob-cles of predominantly holelike character.
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TABLE I. Scattering probabilities at NS interface as a function of the normalized excitation eBergy

[E|<1,0<0, [E[>10<0, 6=6c
A(E, 6) 1 1 0
=2 _T2 2 2 - =
E-+(1 E)(1+ZZeﬁ(0)) [|E|+‘/E2—1(1+22§ﬁ(a))]2
B(E, ) 1-A(E,6) A 1)(ZE4(0) + Z2(0)) !

[+ VE2— 11+ 222,(6)?
CE.0) 0 2V 1(E)+ VEZ 1)1+ 224(0) °
B[+ VE?— 10+ 222 0]
D(E, ) 0 2\E2-1(|E|- VE?-1)22(0)

[|E[+ VE?—1(1+22%4(6))]?

ability for Andreev reflection at the gap edge for all angles of fNE, 7—6,V)=A(-E,0)[1-tN(-E,06,V)]
incidence @< 4d.) and for all barrier strengths.
+B(E,)f'(E,0,V)

IV. CURRENT-VOLTAGE CHARACTERISTIC, EXCESS +C(E 0)f(s)(E 6s,V)
CURRENT, AND DIFFERENTIAL CONDUCTANCE -

(S
We calculate the current on the normal side of the inter- +D(E 0)TZ(E, bs.V). (18

face where the current is carried only by single quasiparticlesiere, the first term represents Andreev reflection of time-
and no supercurrent. The current density inzftbrection is  reversed quasiparticles, the second term represents normal

given by reflection, and the last two terms represent transmission of
quasiparticles from the superconductor whé@(E,es,V)
d% . =fo(E) and #5=arcsin€, sind). Using the translational in-
=2 f(z )dev-ezf““)(k), (17 variance along the interface, the sum rule=A+B+C
a a

+D, and the symmetries with respect to energy yields the

. . . normalized current
whered=1,2,3 is the dimension of the electron gas and

f(N(k) is the nonequilibrium distribution function on the Ag (* —— _ ~ N
|——f ETE)fo(E—eVIAg) —fo(E)], (19

normal side of the interface. This approach neglects coherent

effects of the propagation of electronlike and holelike quasi-

particles in the normal region and it applies to NS interfacesyhere E=E/A, is the normalized excitation energRy is

with a ballistic normal region and/or NS interfaces where thethe normal state resistance, and

length of the normal region is large on the scale of the phase

coherence length. The integration is performed using polar T.0(E)=[1+A(E,00-B(E,0)], (20)

coordinates appropriate for a 1D electron gas, a two-

dimensional(2D) electron gas, and a 3D electron gas, re- _ w2 co ~ -

spectively. The 1D case corresponds to the BTK model. TZD(E)EJ do——[1+A(E,0)—B(E,0)], (21)
In general the nonequilibrium distribution function can be 0

found from a suitable transport equation, e.g., Boltzmann

_ /2 i
equation. Instead of taking this path, we follow BTK and T3D(E)Ef dew[1+A(E,6)—B(~E,a)],
assume that all quasiparticles incident from the reservoir are 0 2
distributed in accordance with the Fermi—Dirac equilibrium (22)

distribution function with a shift in energy due to the applied gre effective transmission coefficients for electrical current.
voltage. When current flows, the reservoir is not in true equi-The current for two- and three-dimension systems have the
librium. However, the voltage drop across the normal regiorsame qualitative form as in the 1D BTK model. However,
can be accounted for by an Ohmic series resistance. We calyantitative changes are seen in the excess current and the
culate fN(E,0) =0(m/2— ) f V) (E,0) +O(6-m/2f M (E,0)  differential conductance.

by considering the two subpopulations separately. If we take The effective transmission coefficients are in general
the chemical potential of the superconductor as reference, Warger than the corresponding normal state transmission co-
get {N(E, 0,V)=fo(E—eV) for the subpopulation of qua- efficients and this effect gives rise to a voltage dependent
siparticles with a positive momentum in tkalirection. The  excess current compared to the normal state, where often the
subpopulation of quasiparticles with a negative momentum isigh-voltage limit
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20 Gate 1 Gate2 Gate3
4/3 S 1,=0.10, 1,=0.007 1,=0.10, r,=0.007
1.0
2DEG Superconductor
0.5
S
,,,,,,,, %{ /\\\:’:-\i-"_- —-ee-p]
1,=0.44, 1,=0.03 4/3 0 t,=0.44, 1,=0.03 M on e)/eo
e 1.0 L5 o
4 &
o 1l 1.0
= > o
;; 1D 0.5 R
o
4/3 FIG. 3. Interface between a ballistic 2DEG and a supercon-
ductor. The three gates may individually be applied a gate-voltage
10 and in this way it is possible to have perpendicular incidence or a
finite angle of incidence defined by for example gate 2 and gate 3.
0.5
current, we find a lower zero-bias conductance with raising
o dimensionality as compared to the case of transport with

perpendicular incidence.

As an application of the present results, we now consider
recent experiments by Taboryskt al'® who reported on
Andreev reflections at interfaces between G43BEG) and
. . ) N superconducting Al films. The material parameters e
Normalized differential conductance at zero big/=0) as a ~0.44 andr,=0.03 and from the excess current of the 1D

function of the dimensionless barrier strendgth The thin lines, . . .
dashed lines, and thick lines correspond to the 1D BTK model, theE.’TK model, Taboryskeet al. deduce the dimensionless bar

2D, and 3D calculations, respectively. The temperature dependené’eer strengthZy, to fall in the range from 0.7 to 0.9. Compar-

of the excess current is entirely contained within the normalizatior!9 with (b) in t.he left panel of Fig. 2 we find the barrier
through Ao(T) and the differential conductance is plotted &t  Stréngth to fall in the range from 0.5 to 0.7. For GaAs, the

—0 K. The excess current and the zero bias differential conduc€N€rdy dependence of the effective mass due to ng)nparabo-
tance are shown fof@) parameters appropriate for a 2D GaAs-Al liCity is negligible within ~50A 5 of the Fermi level® for
interface with a Fermi temperatufg=100 K of GaAs(b) param-  both the cases considered in Fig. 2. Since the zero-bias con-
eters appropriate for the 3D GaAs-Al interface studied by Tabo-ductance is a Fermi-surface property no restrictions have
ryski et al,'® and (c) matching Fermi velocities and Fermi mo- been made by neglecting the energy dependence of the ef-
menta. For the shown 2D result i@ and 3D result in(b) the  fective mass. For the high voltage limit of the excess current,
overestimation o for a perfect interface is 0.68 and 0.45, respec-the corrections due to a nonparabolic conduction band are

FIG. 2. Left panel: Normalized excess curre®Ryl oyc/ Ag(T)
as a function of the dimensionless barrier strengtiiRight panel:

tively. small. For InAs, as considered by Selsler and Kmmef!
the energy dependence due to nonparabolicity is more pro-
lexe= lim [1(V)= lim (V)] (23 nounced.
evsAg Ag—0
is of interest from an experimental point of view. V. SUGGESTED EXPERIMENT

We have shown above that a large parallel momentum ) o1 )
suppresses the Andreev reflection probability and thus we Benistantet al™" have studied the angle dependence of
expect to see a lower excess current in the three- or twoAndreev scattering at Ag-Pb interfaces experimentally by us-
dimensional limit as compared to the case of perpendiculai"d & magnetic focusing technique. The quasiparticles are
incidence. This is seen in the left panel of Fig. 2. For perfecinjected to a very cleafballistic) 3D Ag crystal through a
(Z=0) 2D and 3D interfaces with nonmatching Fermi ve- Point contact and the angle of incidence at the NS interface is
locities and Fermi momenta, the 1D BTK model overesti-controlled by a weak magnetic field. We suggest a variant
mates the barrier strengghsignificantly. For the shown 2D based on an interface between a ballistic two-dimensional
and 3D results the overestimationdfor a perfect interface  electron-gag2DEG) and a superconductor and the techno-

is 0.68 and 0.45, respectively. logical opportunity of defining the angle of incidence geo-

At low temperatures the normalized differential conduc-metrically. By applying gates on top of the 2DEG, it is pos-

tance,g=Gys/Gun ., is given by sible to control the angle of incidence as sketched in Fig. 3.
If gate 1 and gate 3 are both negatively biased whereas gate

g(V)=T(eVIAy)/Ty, (24) 2 is turned off then quasiparticles have perpendicular inci-

_ dence. However, biasing gate 2 and gate 3, while gate 1 is
whereTy is the effective transmission probability when the turned off, a finite angle of incidence can be achieved.
superconductor is in the normal state. In the right panel of The angle dependence can be studied by measuring the
Fig. 2, results at zero bias are shown. Similarly to the excesdifferential conductance. At low temperatures the normalized
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differential conductance, g(eV,0)=Gyg(eV,d)/  scopic transport. If the current is carried by more than a

Gnn(eV, 6), is given by single mode different modes represent different momenta

parallel to the interface, and thus the scattering amplitudes

1+T(0)A(eV,0)—T(—0)B(eV,0) depend on the mode index. More details may be found in a

g(eV,0)= = ., (25 review of scattering theory in mesoscopic NS structures by
1=T(=6)B(6) Beenakker®

whereB=22/(1+ %) is the normal reflection probability We have investigated the angle-dependence of scattering

when the superconductor is in the normal state. The tranf quasiparticles at NS interfaces using the framework of
mission for quasiparticles leaving the interface through theé3°goliubov—de Gennes. As a main result the scattering prob-
gates,T(6), is peaked around= 6, with a width depend- abilities of t_he BTK mode_l may still be applied prov_lded that
ing on the geometry. The possibility of multiple Andreev the scattering strength is replaced by an effective angle-
reflections can be neglected if the phase-relaxation length dePendent barrier strength. This modified effective scattering
less than four times the distance between the interface arRprameter agrees with previous calculations —of BTK,
the gate nearest to the interface. Blonder and Tinkhami, and Kupk&® One of the conse-
The experimental curves fai(eV,0) andg(eV,6,) may  duences is that the Andreev reflection is suppressed for large

be fitted to Eq.(25) with the transmissionT (), and the angles of incidence and the normal reflection is increased
barrier strengthZ, as fitting parameters. Further information toWards unity. In the presence of a Fermi momentum mis-
onZ andT(6,) may be obtained from the normal state con-Mmatch, we find the angles of incidence and transmission to be

ductance. When the superconductor is in the normal state ﬂ{glatgd an.d. in analogy V\{ith'SneII’s law, we find that above a
Landauer formula yields the conductance certain critical angle of incidence we only have normal re-

flection.
2e2 - Furthermore, the results of the angle dependence have
Gn(bo) = 5~ MT(6o)[1—B(6o)] (26)  been applied to NS interfaces with one, two and three-

dimensional nature where we find that the 1D BTK model
whereM is the number of modes. Thus, agreement with thepverestimates the barrier strength. Calculations show that for
angle dependence is found if fits of the experimental curvegertain material parameters and clean interfaces the correc-
for g(eV,0) andg(eV, 6y) can be obtained using the sade tions may be significant. However, the over-all qualitative
value. predictions of the 1D BTK model are found to agree with the
new calculations.
VI. DISCUSSION AND CONCLUSION

The angle dependence of scattering at NS interfaces is of
important consequence when the NS interface has two or
three-dimensional nature. The parallel degrees of freedom We would like to thank J. Bindslev Hansen, J. Kutchin-
also have important consequences in superconducting messky, and R. Taboryski for useful discussions.
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