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We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface,
generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk~BTK!. An increase of the mo-
mentum parallel to the interface leads to suppression of the probability of Andreev reflection and increase of
the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the
semiconductor and the superconductor the angles of incidence and transmission are related according to the
well-known Snell’s law in optics. As a consequence there is a critical angle of incidence above which only
normal reflection exists. For two- and three-dimensional interfaces a lower excess current compared to ballistic
transport with perpendicular incidence is found. Thus, the one-dimensional BTK model overestimates the
barrier strength for two- and three-dimensional interfaces.@S0163-1829~99!01615-X#

I. INTRODUCTION

An electronlike quasiparticle incident on a normal
conductor–superconductor~NS! interface from the normal
side may become Andreev reflected into a holelike quasipar-
ticle with reversal of the signs of all three velocity compo-
nents~retroflection! and of the energy~relative to the Fermi
level! as shown by Andreev.1 Later, Blonder, Tinkham, and
Klapwijk2 ~BTK! calculated the scattering probabilities at a
NS interface within a model where the scattering at the in-
terface was represented by a delta-function potential barrier.
The calculations were based on the Bogoliubov–de Gennes
~BdG! formalism,3 for a one-dimensional~1D! geometry
thus ignoring all effects due to quasiparticles with a momen-
tum parallel to the interface.

The BTK model has been widely used by experimentalists
to model normal-metal–superconductor junctions, and it has
despite of its inherent approximations been quite successful
in describing the main features of these devices. The quality
of the junction interface has conveniently been parametrized
in terms of the normalized delta-function barrier strength.

A more complete theory was developed by Arnold4 using
nonequilibrium Green’s-function techniques. The theory by
Arnold furthermore takes the three-dimensional~3D! nature
of the interface into account. However, the resulting expres-
sions are complicated and require substantial numerical
work. Generalization of the BTK model to tunnel barriers
other than delta-function scattering potentials has been done
by Kupka in a number of papers.5,6 Recently, Kupka6 gener-
alized the more realistic tunnel barrier model to include the
angel dependence of the scattering. He found that by treating
the scattering problem in the correct three-dimensional pic-
ture, the effective Andreev scattering is reduced and the nor-
mal scattering probability is enhanced. Chaudhuri and

Bagwell7 and De Raedt, Michielsen, and Klapwijk8 have also
considered the angle dependence in their applications of the
BdG formalism to the transport properties of NS interfaces.
However, except for the 1D work of Blonder and Tinkham9

the above-mentioned papers all focused on the case where
there is no mismatch between densities~and hence Fermi
wavelengths! or between effective band masses of the two
materials forming the NS junction. In the case of SNS junc-
tions, Kupriyanov10 included effects of the parallel degree of
freedom and different Fermi velocities of the N and S re-
gions in his application of the Eilenberger equations to the dc
Josephson current in junctions with clean interfaces. Using
the BdG formalism, the effect of different Fermi velocities
and effective masses was also considered by Schu¨ssler and
Kümmel11 and Chrestin, Matsuyama, and Merkt12 in their
numerical studies of the dc Josephson current in Nb-InAs-Nb
junctions.

Since much of the development in the recent years has
been in structures where superconductors are combined with
semiconductors, the goal of this paper is an analytical study
of the importance of the different quasiparticle propagation
in the two materials, when the degrees of freedom parallel to
the interface and effects of the unequal Fermi velocities and
Fermi wavelengths are taken into account. This is motivated
by the observation that Andreev scattering cannot occur
above a critical angle where the momentum can no longer be
conserved. The critical angle depends on the ratio of the
carrier density of the semiconductor to the density of the
superconductor. Therefore, one may expect larger differ-
ences between 1D and 2D or 3D junctions for the case of a
finite Fermi wave-vector mismatch, which is indeed what we
find.

The effect of the angle dependence of the Andreev scat-
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tering probability is however somewhat suppressed by the
fact that the current is carried mostly by particles incoming
perpendicular to the interface in 2D or at angle of 45° in 3D.
Therefore, we suggest an experiment where the angle depen-
dence of Andreev scattering is probed in a more direct fash-
ion, namely a mesoscopic device which explores the ballistic
motion of quasiparticles and where the angle of incidence
can be varied. Such a device is possible due to the advances
in fabrication of mesoscopic semiconductor-superconductor
interfaces~see e.g., Ref. 13!, which have made it possible to
study Andreev scattering in the ballistic regime.

The paper is organized as follows: In Sec. II, the BdG
formalism is introduced, and in Sec. III, the scattering prob-
abilities at the interface are calculated. These scattering prob-
abilities are used in Sec. IV to calculate current-voltage char-
acteristics and related quantities. In Sec. V an experiment is
suggested and, finally, in Sec. VI discussions and conclu-
sions are given.

II. THE BOGOLIUBOV –de GENNES FORMALISM

The BdG equations

S Ĥ0~r ! D~r !

D* ~r ! 2Ĥ0* ~r !
D c~r !5Ec~r ! ~1!

provide a microscopic formalism for studying inhomoge-
neous superconductors and NS interfaces.3 Here,D(r ) is the
pairing potential andĤ0(r ) is the Hamiltonian. In a general
nonequilibrium situation, the Hamiltonian includes either a
time-dependent vector potential or a spatially dependent sca-
lar potential. However, we follow BTK~Ref. 2! and neglect
the effect of a finite bias on the scattering probabilities,
which is justified if the height of the tunnel barrier is much
higher than the applied voltage and/or energy of the carriers
~relative to the Fermi level!.6 For an interface where the po-
sition of the conduction band and the effective mass change
across the interface, we use the effective mass
approximation14,15

Ĥ0~r !52¹̂
\2

2m!~r !
“̂1U~r !2m, ~2!

where U(r ) is total electrostatic potential, andm is the
chemical potential. This approximation describes the spatial
dependence of the dispersion relation, and the form of the
Hamiltonian ensures conservation of the probability current.
For a discussion of justifications of this approach, see Refs.
14 and 15 and references therein. We assume a parabolic
dispersion so that the effective massm! does not depend on
energy~or momentum!.

The solutions to Eq.~1! are vectors in the so-called
electron–hole space~Nambu space!, c(r )5@u(r ),v(r )#T,
whereu(r ) is the electronlike quasiparticle amplitude satis-
fying an ordinary electronlike Schro¨dinger equation andv(r )
is the holelike quasiparticle amplitude satisfying a time-
reversed Schro¨dinger equation. In electron–hole space, a
probability current density can be associated with the wave
function, and is given by2,3,14

Jp5\ ImH u* ~r !
1

m!~r !
“̂u~r !2v* ~r !

1

m!~r !
“̂v~r !J .

~3!

The BdG equations and the conservation of the probability
current density form the basis for our treatment of scattering
of quasiparticles at the NS interface. Equation~1! is used in
calculating scattering amplitudes and the corresponding scat-
tering probabilities are found using Eq.~3!.

III. SCATTERING OF QUASIPARTICLES AT A NS
INTERFACE

We consider a planar NS interface lying in thexy-plane at
z50 with a semi-infinite nonsuperconducting material forz
,0 and a semi-infinite superconductor forz.0. The super-
conducting order parameter is assumed to vary in space only
along thez direction. In order to solve the BdG equations, we
include only scattering at the NS interface. Following BTK,
we model the scattering at the interface by a delta-function
potential

U~r !5Hd~z!, ~4!

whereH is the strength of the potential barrier. For simplic-
ity, we neglect the phase of the pairing potential since only
the absolute value is important for the considered geometry.
Furthermore, to avoid self-consistent calculations, we take
the pairing potential to be zero in the normal conductor and
uniform in the superconductor, i.e.,

D~r !5D0Q~z!, ~5!

whereD0 is the BCS value of the energy gap andQ(z) is a
Heaviside function. Similarly for the effective masses of the
two materials, we assume that the mass changes abruptly
across the interface

m!~r !5m~N!Q~2z!1m~S!Q~z!, ~6!

wherem(N) andm(S) are the effective masses of the normal
conductor and the superconductor, respectively. Equations
~4!-~6! represent the simplest forms ofU(r ), D(r ), and
m!(r ) still capturing the main physics of the NS interface.

Due to the simple form of the NS barrier potential, the
pairing potential and the effective mass, we can separate the
variables and express the solutions in the parallel direction as
plane waves, i.e.,c (N,S)(r )5exp@i(kx

(N,S)x1ky
(N,S)y)#c (N,S)

3(z), where the superscript (N,S) refers to the nonsuper-
conducting or superconducting sides, respectively. Substitut-
ing this Ansatz into Eq.~1!, yields the effective BdG equa-
tions for thez direction
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S F2
\2

2m~N,S!

]2

]z2
1Hd~z!2meff

~N,S!G D0Q~z!

D0Q~z! 2F2
\2

2m~N,S!

]2

]z2
1Hd~z!2meff

~N,S!G D c~z!5Ec~z!, ~7!

where the effective chemical potential is defined as

meff
~N,S![m~N,S!2

\2

2m~N,S!
~ @kx

~N,S!#21@ky
~N,S!#2!. ~8!

Equation~7! is mathematically identical to the 1D BdG
equations considered by BTK, and, therefore, we expect
similar results for the scattering probabilities. We adopt the
notation of BTK~Ref. 2! and all formulas for the eigenstates,
scattering states, wave vectors (q6 andk6) etc. are equiva-
lent to those of BTK, but with the important difference that
the chemical potential is replaced by an effective chemical

potential, which depends on the parallel momentum accord-
ing to Eq.~8!.

We follow BTK and consider an electronlike quasiparticle
incident on the NS interface from the normal side. At the
interface it has an amplitudea of undergoing Andreev reflec-
tion, b of normal reflection,c of normal transmission, andd
of Andreev transmission. The scattering amplitudes are ob-
tained by matching the scattering states at the NS interface,
using the appropriate boundary conditions for a delta-
function potential barrier~see, e.g. Refs. 14 and 16!. The
matching results in following linear system determining
a, b, c, andd

S 0 1 2u0 2v0

1 0 2v0 2u0

0
2H

\2
2 i

q1

m~N!
2 i

k1

m~S!
u0 i

k2

m~S!
v0

2H

\2
1 i

q2

m~N!
0 2 i

k1

m~S!
v0 i

k2

m~S!
u0

D S a

b

c

d

D 5S 21

0

2
2H

\2
2 i

q1

m~N!

0

D . ~9!

Though complicated, the exact scattering probabilities can
now be found and numerical results for different values of
the effective chemical potential have been given by S˘ ipr and
Györffy.17 However, the calculations may be simplified sig-
nificantly for materials with a high Fermi energy compared
to the temperatures or bias voltages of interest. In this limit
transport only takes place near the Fermi level.

We choose polar coordinates and allow for a Fermi veloc-
ity mismatch by considering a wave vector on the normal
side given byk(N)5kF

(N)(sinu cosf,sinu sinf,cosu) and a
wave vector on the superconducting side withuk(S)u5kF

(S) .
The boundary conditions are satisfied only ifkx

(N)5kx
(S)

and ky
(N)5ky

(S) , as dictated by the translational invariance
along the interface. This means that kz

(S)

5kF
(S)A12r k

2 sin2 u, where the Fermi momentum ratio is
given byr k[kF

(N)/kF
(S) . The wave vectors on the normal con-

ducting side can now be written as q6

5kF
(N)Acos2 u6E/m(N) and on the superconducting side we

similarly getk65kF
(S)A(12r k

2 sin2 u)6AE22D0
2/m (S). This

way of including the angle dependence is in accordance with
Refs. 6, 8, 11, 12, 17, and 18 but differs from the approach of
Chaudhuri and Bagwell7 in which the angle corrections to

the 1D expressions forq6 andk6 are approximated by cosu
projection factors. At low temperatures E/m (N)

;AE22D0
2/m (S)!1, and therefore, we apply the Andreev

approximation:k15k25kz
(S) and q15q25kz

(N) . For val-
ues ofm (N,S) relevant for normal metals and low-temperature
superconductors this approximation is valid for angles of in-
cidenceu&p/2. Semiconductors have much lower Fermi en-
ergies as compared to those of normal metals, but, even for
T/TF;1/50 the approximation is reasonable. For angles in
the vicinity of u;p/2 the approximation becomes inaccu-
rate. However, quasiparticles with vanishing perpendicular
momentum do not contribute significantly to the perpendicu-
lar current and their effect in the IV curves and related quan-
tities will thus not be important for semiconductors either.
We have in fact checked this for the excess current by nu-
merically solving Eq.~16! and found less than a half percent
deviations for the GaAs two-dimensional electron gas
~2DEG! considered in Fig. 2. With these approximations the
amplitudes become

a5
u0v0

g
~10!
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b52

~u0
22v0

2!FGS Z

cosu D 2

1
12G2r 2

4Gr
1 iGAr

Z

cosuG
g

,

~11!

c5

u0S 11Gr

2
2 iGAr

Z

cosu D
g

, ~12!

d5

iv0S GAr
Z

cosu
2 i

12Gr

2 D
g

, ~13!

where we defineg[u0
21(u0

22v0
2)Zeff

2 (u), and where

Zeff~u!5AG~u!~Z/cosu!21 @G~u!r v21#2/4G~u!r v

~14!

is an effective barrier strength,r v[vF
(N)/vF

(S) is the Fermi

velocity ratio andG(u)[cosu/A12r k
2 sin2u. The dimension-

less barrier strengthZ[H/\AvF
(N)vF

(S) was introduced by
Blonder and Tinkham.9

In order to obtain the scattering probabilitiesA, B, C,
and D we use the conservation of the probability current
density, Eq.~3!. For thez direction this yields

~15!

It turns out that the scattering probabilities of the BTK
model can still be applied provided that the dimensionless
barrier strength is replaced by the introduced effective barrier
strength given in Eq.~14!. For perpendicular incidence (u
50) this result agrees with the BTK result (r v51) ~Ref. 2!
and the Blonder–Tinkham result,9 which includes the possi-
bility of a Fermi velocity mismatch. For a general angle of
incidence and matching Fermi velocities and Fermi momenta
(r v5r k51) the result reduces to that obtained by Kupka.6

As mentioned, the wave vectors of the transmitted waves
have the formkz

(S)5kF
(S)A12r k

2 sin2 u. The square root de-
fines a critical angel of incidenceuc , above which the solu-
tions are evanescent and below which we have propagating
waves, i.e.,uc5arcsin (1/r k) for r k.1. The physical reason
for the critical angle is that the parallel momentum exceeds
the Fermi momentum of the superconductor and thus mo-
mentum cannot be conserved. Forr k<1 there is no critical
angle due to the parallel momentum not being con-
served. Going beyond the Andreev approximation intro-
duces another energy-dependent critical angleũc

5arcsinA12E/m (N) caused by the wave vectorq2 of the
Andreev scattering state being imaginary.17 However, the
later critical angle has little consequences for our results for
the same reasons as when we discussed the validity of the
Andreev approximation. In Sec. V, we suggest how the angle
dependence may be probed.

The directions of the reflected and transmitted waves can
be obtained by considering the probability current density
and the result is sketched in Fig. 1. The angle of reflectionu r
coincides with the angle of incidenceu and the angle of
transmission is given by

sinu t5r k sinu ~16!

in analogy with Snell’s law in optics as it was also found by
Kupriyanov.10 The general results for the scattering prob-

abilities including the possibility of a Fermi velocity mis-
match are summarized in Table I. We conclude that the scat-
tering probabilities of the BTK model still apply, provided
that the dimensionless barrier strength is replaced by an
angle-dependent effective barrier strength.

As the angle of incidence is increased, we observe an
increasing effective barrier strength and therefore Andreev
reflection is suppressed when the parallel momentum be-
comes much larger than the perpendicular momentum.6 In
the same way, normal reflection increases when the parallel
momentum increases. Nevertheless, we still have unit prob-

FIG. 1. Directions of the transmitted and reflected waves in real
space. The full dots (d) represent quasiparticles of predominantly
electronlike character and the open dots (s) represent quasiparti-
cles of predominantly holelike character.
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ability for Andreev reflection at the gap edge for all angles of
incidence (u,uc) and for all barrier strengths.

IV. CURRENT-VOLTAGE CHARACTERISTIC, EXCESS
CURRENT, AND DIFFERENTIAL CONDUCTANCE

We calculate the current on the normal side of the inter-
face where the current is carried only by single quasiparticles
and no supercurrent. The current density in thez direction is
given by

Jz5(
s

E ddk

~2p!d
ev•êzf

~N!~k!, ~17!

where d51,2,3 is the dimension of the electron gas and
f (N)(k) is the nonequilibrium distribution function on the
normal side of the interface. This approach neglects coherent
effects of the propagation of electronlike and holelike quasi-
particles in the normal region and it applies to NS interfaces
with a ballistic normal region and/or NS interfaces where the
length of the normal region is large on the scale of the phase
coherence length. The integration is performed using polar
coordinates appropriate for a 1D electron gas, a two-
dimensional~2D! electron gas, and a 3D electron gas, re-
spectively. The 1D case corresponds to the BTK model.

In general the nonequilibrium distribution function can be
found from a suitable transport equation, e.g., Boltzmann
equation. Instead of taking this path, we follow BTK and
assume that all quasiparticles incident from the reservoir are
distributed in accordance with the Fermi–Dirac equilibrium
distribution function with a shift in energy due to the applied
voltage. When current flows, the reservoir is not in true equi-
librium. However, the voltage drop across the normal region
can be accounted for by an Ohmic series resistance. We cal-
culate f (N)(E,u)5Q~p/22u) f→

(N)(E,u)1Q~u2p/2!f←
(N)(E,u)

by considering the two subpopulations separately. If we take
the chemical potential of the superconductor as reference, we
get f→

(N)(E,u,V)5 f 0(E2eV) for the subpopulation of qua-
siparticles with a positive momentum in thez direction. The
subpopulation of quasiparticles with a negative momentum is

f←
~N!~E,p2u,V!5A~2E,u!@12 f→

~N!~2E,u,V!#

1B~E,u! f→
~N!~E,u,V!

1C~E,u! f←
~S!~E,uS ,V!

1D~E,u! f←
~S!~E,uS ,V!. ~18!

Here, the first term represents Andreev reflection of time-
reversed quasiparticles, the second term represents normal
reflection, and the last two terms represent transmission of
quasiparticles from the superconductor wheref←

(S)(E,uS ,V)
5 f 0(E) and uS5arcsin(rk sinu). Using the translational in-
variance along the interface, the sum rule 15A1B1C
1D, and the symmetries with respect to energy yields the
normalized current

I 5
D0

eRN
E

2`

`

dẼ T̄~Ẽ!@ f 0~Ẽ2eV/D0!2 f 0~Ẽ!#, ~19!

where Ẽ[E/D0 is the normalized excitation energy,RN is
the normal state resistance, and

T̄1D~Ẽ![@11A~Ẽ,0!2B~Ẽ,0!#, ~20!

T̄2D~Ẽ![E
0

p/2

du
cosu

2p
@11A~Ẽ,u!2B~Ẽ,u!#, ~21!

T̄3D~Ẽ![E
0

p/2

du
sinu cosu

2
@11A~Ẽ,u!2B~Ẽ,u!#,

~22!

are effective transmission coefficients for electrical current.
The current for two- and three-dimension systems have the
same qualitative form as in the 1D BTK model. However,
quantitative changes are seen in the excess current and the
differential conductance.

The effective transmission coefficients are in general
larger than the corresponding normal state transmission co-
efficients and this effect gives rise to a voltage dependent
excess current compared to the normal state, where often the
high-voltage limit

TABLE I. Scattering probabilities at NS interface as a function of the normalized excitation energyẼ
[E/D0 .

uẼu,1,u,uc uẼu.1,u,uc
u>uc

A(Ẽ,u) 1

Ẽ21~12Ẽ2!„112Zeff
2 ~u!…2

1

@ uẼu1AẼ221„112Zeff
2 ~u!…#2

0

B(Ẽ,u) 12A(Ẽ,u) 4~Ẽ221!„Zeff
4 ~u!1Zeff

2 ~u!…

@ uẼu1AẼ221„112Zeff
2 ~u!…#2

1

C(Ẽ,u) 0
2AẼ221~ uẼu1AẼ221!„11Zeff

2 ~u!…

@ uẼu1AẼ221„112Zeff
2 ~u!…#2

0

D(Ẽ,u) 0
2AẼ221~ uẼu2AẼ221!Zeff

2 ~u!

@ uẼu1AẼ221„112Zeff
2 ~u!…#2

0
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I exc[ lim
eV@D0

@ I ~V!2 lim
D0→0

I ~V!# ~23!

is of interest from an experimental point of view.
We have shown above that a large parallel momentum

suppresses the Andreev reflection probability and thus we
expect to see a lower excess current in the three- or two-
dimensional limit as compared to the case of perpendicular
incidence. This is seen in the left panel of Fig. 2. For perfect
(Z50) 2D and 3D interfaces with nonmatching Fermi ve-
locities and Fermi momenta, the 1D BTK model overesti-
mates the barrier strengthZ significantly. For the shown 2D
and 3D results the overestimation ofZ for a perfect interface
is 0.68 and 0.45, respectively.

At low temperatures the normalized differential conduc-
tance,g[GNS/GNN , is given by

g~V!5T̄~eV/D0!/T̄N , ~24!

whereT̄N is the effective transmission probability when the
superconductor is in the normal state. In the right panel of
Fig. 2, results at zero bias are shown. Similarly to the excess

current, we find a lower zero-bias conductance with raising
dimensionality as compared to the case of transport with
perpendicular incidence.

As an application of the present results, we now consider
recent experiments by Taboryskiet al.19 who reported on
Andreev reflections at interfaces between GaAs~3DEG! and
superconducting Al films. The material parameters arer v
.0.44 andr k.0.03 and from the excess current of the 1D
BTK model, Taboryskiet al. deduce the dimensionless bar-
rier strengthZfit to fall in the range from 0.7 to 0.9. Compar-
ing with ~b! in the left panel of Fig. 2 we find the barrier
strength to fall in the range from 0.5 to 0.7. For GaAs, the
energy dependence of the effective mass due to nonparabo-
licity is negligible within ;50DAl of the Fermi level20 for
both the cases considered in Fig. 2. Since the zero-bias con-
ductance is a Fermi-surface property no restrictions have
been made by neglecting the energy dependence of the ef-
fective mass. For the high voltage limit of the excess current,
the corrections due to a nonparabolic conduction band are
small. For InAs, as considered by Schu¨ssler and Ku¨mmel11

the energy dependence due to nonparabolicity is more pro-
nounced.

V. SUGGESTED EXPERIMENT

Benistantet al.21 have studied the angle dependence of
Andreev scattering at Ag-Pb interfaces experimentally by us-
ing a magnetic focusing technique. The quasiparticles are
injected to a very clean~ballistic! 3D Ag crystal through a
point contact and the angle of incidence at the NS interface is
controlled by a weak magnetic field. We suggest a variant
based on an interface between a ballistic two-dimensional
electron-gas~2DEG! and a superconductor and the techno-
logical opportunity of defining the angle of incidence geo-
metrically. By applying gates on top of the 2DEG, it is pos-
sible to control the angle of incidence as sketched in Fig. 3.
If gate 1 and gate 3 are both negatively biased whereas gate
2 is turned off then quasiparticles have perpendicular inci-
dence. However, biasing gate 2 and gate 3, while gate 1 is
turned off, a finite angle of incidence can be achieved.

The angle dependence can be studied by measuring the
differential conductance. At low temperatures the normalized

FIG. 2. Left panel: Normalized excess currenteRNI exc/D0(T)
as a function of the dimensionless barrier strengthZ. Right panel:
Normalized differential conductance at zero biasg(V50) as a
function of the dimensionless barrier strengthZ. The thin lines,
dashed lines, and thick lines correspond to the 1D BTK model, the
2D, and 3D calculations, respectively. The temperature dependence
of the excess current is entirely contained within the normalization
through D0(T) and the differential conductance is plotted atT
50 K. The excess current and the zero bias differential conduc-
tance are shown for~a! parameters appropriate for a 2D GaAs-Al
interface with a Fermi temperatureTF.100 K of GaAs,~b! param-
eters appropriate for the 3D GaAs-Al interface studied by Tabo-
ryski et al.,19 and ~c! matching Fermi velocities and Fermi mo-
menta. For the shown 2D result in~a! and 3D result in~b! the
overestimation ofZ for a perfect interface is 0.68 and 0.45, respec-
tively.

FIG. 3. Interface between a ballistic 2DEG and a supercon-
ductor. The three gates may individually be applied a gate-voltage
and in this way it is possible to have perpendicular incidence or a
finite angle of incidence defined by for example gate 2 and gate 3.
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differential conductance, g(eV,u)[GNS(eV,u)/
GNN(eV,u), is given by

g~eV,u!5
11T~u!A~eV,u!2T~2u!B~eV,u!

12T~2u!B̃~u!
, ~25!

whereB̃5Zeff
2 /(11Zeff

2 ) is the normal reflection probability
when the superconductor is in the normal state. The trans-
mission for quasiparticles leaving the interface through the
gates,T(u), is peaked aroundu5u0 , with a width depend-
ing on the geometry. The possibility of multiple Andreev
reflections can be neglected if the phase-relaxation length is
less than four times the distance between the interface and
the gate nearest to the interface.

The experimental curves forg(eV,0) andg(eV,u0) may
be fitted to Eq.~25! with the transmission,T(u0), and the
barrier strength,Z, as fitting parameters. Further information
on Z andT(u0) may be obtained from the normal state con-
ductance. When the superconductor is in the normal state the
Landauer formula yields the conductance

GNN~u0!5
2e2

h
MT~u0!@12B̃~u0!# ~26!

whereM is the number of modes. Thus, agreement with the
angle dependence is found if fits of the experimental curves
for g(eV,0) andg(eV,u0) can be obtained using the sameZ
value.

VI. DISCUSSION AND CONCLUSION

The angle dependence of scattering at NS interfaces is of
important consequence when the NS interface has two or
three-dimensional nature. The parallel degrees of freedom
also have important consequences in superconducting meso-

scopic transport. If the current is carried by more than a
single mode different modes represent different momenta
parallel to the interface, and thus the scattering amplitudes
depend on the mode index. More details may be found in a
review of scattering theory in mesoscopic NS structures by
Beenakker.18

We have investigated the angle-dependence of scattering
of quasiparticles at NS interfaces using the framework of
Bogoliubov–de Gennes. As a main result the scattering prob-
abilities of the BTK model may still be applied provided that
the scattering strength is replaced by an effective angle-
dependent barrier strength. This modified effective scattering
parameter agrees with previous calculations of BTK,2

Blonder and Tinkham,9 and Kupka.6 One of the conse-
quences is that the Andreev reflection is suppressed for large
angles of incidence and the normal reflection is increased
towards unity. In the presence of a Fermi momentum mis-
match, we find the angles of incidence and transmission to be
related and in analogy with Snell’s law, we find that above a
certain critical angle of incidence we only have normal re-
flection.

Furthermore, the results of the angle dependence have
been applied to NS interfaces with one, two and three-
dimensional nature where we find that the 1D BTK model
overestimates the barrier strength. Calculations show that for
certain material parameters and clean interfaces the correc-
tions may be significant. However, the over-all qualitative
predictions of the 1D BTK model are found to agree with the
new calculations.
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