43 research outputs found

    Laboratory based feeding behaviour of the Chinese mitten crab, <i>Eriocheir sinensis</i>, (Crustacea: Decapoda: Brachyura: Varunidae):fish egg consumption

    Get PDF
    Dispersal of Eriocheir sinensis from its native habitat is a worldwide concern. As one of the most invasive species known, this crab causes significant disruption to foreign ecosystems. In particular, populations in the United Kingdom (UK) are increasing in number and E. sinensis has been reported from many river catchments. The ecological implications of this invasion are not fully understood. One aspect of concern lies in the potential for mitten crabs to predate fish eggs which, if realistic, could contribute to the decline of riverine populations. In this study, 100 mitten crabs from the River Thames were used in experimental feeding trials to 1) investigate foraging ability on a variety of fish eggs and 2) establish whether crab size affected foraging potential. Eggs ranged from 1–6 millimetres (mm) in diameter from one of four species of marine and freshwater fish; zebrafish, lumpfish, Pacific salmon and trout. Predation by crabs varied with egg type; crabs were capable of foraging 1mm zebrafish eggs, but the majority consumed eggs 2–6mm in diameter. The most attractive eggs were apparently lumpfish, where the median proportion consumed was 100%. Crab size did not appear to govern foraging potential, though variation was observed in the size range of juvenile crabs consuming the different eggs with the largest, salmon, being consumed by crabs of the broadest size range. E. sinensis does have the potential to predate on a range of fish eggs, and the results are used to infer the risk presented to specific groups of UK fish stocks.© 2015 The Author(s). Journal compilation © 2015 REABIC. Aquatic Invasions is an Open Access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access

    Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation

    Get PDF
    Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS

    No ‘silver bullet’:Multiple factors control population dynamics of european purple sea urchins in Lough Hyne marine reserve, Ireland

    Get PDF
    Two-decade-long monitoring studies at Europe\u27s first statutory marine reserve—Lough Hyne in SW Ireland—indicate that benthic communities are rapidly changing. Populations of the ecologically important purple urchin (Paracentrotus lividus) have fluctuated widely, most recently with a population boom in the late 1990s, followed by a mass mortality that persists to the present day. Eight general hypotheses have been proposed to account for the urchin decline including cold temperature limiting reproduction, ephemeral algal exudates disrupting urchin fertilization, low larval availability (due to over-harvesting and/or episodic recruitment), high mortality of settlers and juveniles due to hypoxia, hyperoxia, or predation (a trophic cascade hypothesis), and increased mortality due to pathogens (stress hypothesis). The cold-temperature and the trophic cascade hypotheses appear unlikely. The remaining hypotheses, however, all seem to play a role, to some degree, in driving the urchin decline. Ulvoid exudates, for example, significantly reduced urchin fertilization and few larvae were found in plankton tows (2012–2015), indicating low larval availability in summer. Whilst settling urchins regularly recruited under shallow-subtidal rocks until 2011, no settlers were found in these habitats from 2011 to 2014 or in field experiments (2012–2018) using various settlement substrata. Seawater quality was poor in shallow areas of the lough with extreme oxygen fluctuations (diel-cycling hypoxia), and 1-day experimental exposures to DO values < 1 mg L−1 were lethal to most juvenile urchins. Multiple increases of the predatory spiny starfish (Marthasterias glacialis) population in recent decades may also have contributed to the demise of the coexisting juvenile urchins. Finally, urchins of all sizes were seen suffering from dropped spines, tissue necrosis, or white-coloured infection, suggestive of stress-related pathogen mortality. There was a paucity of broken tests, indicating limited predation by large crustaceans; the large number of adult urchins ‘missing’ and few P. lividus tests on the north shore points to possible urchin removal by poachers and/or starfish predation. While these ecological, environmental, and anthropogenic processes occur on open coast rocky shores, many are exacerbated by the semi-enclosed nature of this fully marine sea lough due to its limited flushing. Multiple factors, including low larval availability and rapidly expanding starfish populations, coupled with degraded habitat quality (ephemeral algal mats and extreme oxygen fluctuations), indicate that the purple urchin populations will not recover without an improvement in the water quality of Lough Hyne Marine Reserve, the restocking of urchins, and protection from poaching

    Flexible prey handling, preference and a novel capture technique in invasive, sub-adult Chinese mitten crabs

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article
    corecore