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Abstract  

Dispersal of Eriocheir sinensis from its native habitat is a worldwide concern. As one of the 

most invasive species known, this crab causes significant disruption to foreign ecosystems. In 

particular, populations in the United Kingdom (UK) are increasing in number and E. sinensis 

has been reported from many river catchments (www.mittencrabs.org.uk). The ecological 

implications of this invasion are not fully understood. One aspect of concern lies in the 

potential for mitten crabs to predate fish eggs which, if realistic, could contribute to the 

decline of riverine populations. In this study, 100 mitten crabs from the River Thames were 

used in experimental feeding trials to 1) investigate foraging ability on a variety of fish eggs 

and 2) establish whether crab size affected foraging potential. Eggs ranged from 1-6 

millimetres (mm) in diameter from one of four species of marine and freshwater fish; 

zebrafish, lumpfish, Pacific salmon and trout. Predation by crabs varied with egg type; crabs 

were capable of foraging 1mm zebrafish eggs, but the majority consumed eggs 2-6mm in 

diameter. The most attractive eggs were apparently lumpfish, where the median proportion 

consumed was 100%. Crab size did not appear to govern foraging potential, though variation 

was observed in the size range of juvenile crabs consuming the different eggs with the 

largest, salmon, being consumed by crabs of the broadest size range. E.sinensis does have the 

potential to predate on a range of fish eggs, and the results are used to infer the risk presented 

to specific groups of UK fish stocks. 
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Introduction 

The Chinese mitten crab, Eriocheir sinensis (H. Milne Edwards, 1853), is a highly invasive 

decapod, having successfully colonised numerous countries outside its native range, resulting 

in a wide global distribution that extends across a number of continents from Asia to NE 

Europe and USA. Although the specific site of the first mitten crab found in the Thames is 

unclear, Battersea Power Station (Anon 1936a, b) or Lots Road Power Station (Harold 1936), 

it was certainly captured in Nine Elms/Chelsea Reach in 1935. However, the next Thames 

report was not until 1976 (Ingle and Andrews 1976) followed by a series of papers recording 

establishment of the mitten crab in this watershed (Andrews et al. 1981; Ingle 1986; Attrill 

and Thomas 1996; PF Clark and Rainbow 1997; PF Clark et al. 1998; Gilbey et al. 2008). 

Mitten crabs are catadromous, exhibiting a high degree of euryhalinity that enables migration 

between marine and freshwater environments. Such a life history enables E. sinensis to 

maintain a broad distribution in freshwater for ca. 3–5 years before moving downstream to 

higher salinities for breeding. As the Thames mitten crab population continues to increase in 

number and disperse westward to Oxford, consideration should be given to establishing the 

threat this species poses to native flora and fauna though predation, disease, competition and 

habitat disturbance.  

One issue of particular concern is the possible consumption of fish eggs by mitten 

crabs and the potential reduction of fish stocks. This may be problematic for species 

permanently resident in upstream rivers and also those that migrate into freshwater to breed, 

such as salmon (Salmo salar Linnaeus, 1758). In the Thames, smelt (Osmerus eperlanus 

Linnaeus, 1758) is an example of a species migrating from the lower estuary to breed in 

freshwater. According to Colclough et al. (2002), smelt migrate upstream from south of 

Gravesend to spawn above Battersea in March and April. Eggs are shed on stones, water 

plants, submerged bushes, grass and other solid structures, but never on mud (Belyanina 

1969). Smelt eggs could therefore potentially be eaten by mitten crabs. Whilst a number of 

studies have looked into the dietary intake of E. sinensis and concluded a low ratio of 

ingested fish material in comparison to aquatic flora and invertebrates (Rudnick and Resh 

2005; Czerniejewski et al. 2010), few have sought to directly investigate the ability of E. 

sinensis to predate fish eggs, and the implications this could have for fish stocks spawning in 

freshwater. The Global Invasive Species Database hints at the lack of supporting data on this 

topic by claiming that the risk of predation by E. sinensis on fish eggs is ‘presumably low’ 

(IUCN/SSC Invasive Species Specialist Group 2009). 
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One study which did attempt to address this topic was conducted in California, in 

which the predation rate of salmonid eggs and larvae by Chinese mitten crabs was assessed 

(Culver 2005). Although the results provide some preliminary evidence that E. sinensis can 

predate fish eggs, the data were somewhat limited. Low numbers of crabs were used and eggs 

from only one genus of fish (Oncorhynchus) were included in the assessment, neglecting the 

potential for crabs to consume eggs from other genera and of a variety of sizes. Furthermore, 

only carapace width was used as a measure of crab size, overlooking the possible importance 

of chela width as a determinant of egg consumption. This may have been particularly 

significant in the study of Culver (2005) due to the incorporation of both adult and juvenile 

crabs; studies exploring the relative growth of brachyurans (Hartnoll 1982) have observed 

changes in growth patterns with maturity and suggest a single parameter of size may not be 

sufficient when comparing crabs of varying maturity, at least without established 

correlations. Thus there is a lack of a strong dataset to support or refute the potential for E. 

sinensis to predate fish eggs. This is especially concerning in light of the fact that an effective 

method of controlling this species has not yet been determined, with recent efforts turning 

towards the prospect of human consumption as a means of limiting the population (PF Clark 

et al. 2009). At present, the Thames population is continuing to increase in size (PF Clark 

2011) and disperse around England and Wales. However, the recent report by Yeomans and 

J. Clark (2015) of mitten crab fragments in the River Clyde, Scotland are of concern as this 

species could have a detrimental effect on life cycle of wild salmon and trout populations. 

The key aims of this study were to determine the ability of mitten crabs to consume 

eggs from a range of fish species, to establish whether the size of crabs had any effect on 

their foraging behaviour and, by extension, to infer the potential risk mitten crabs pose to 

native fish in the UK. 

Methods 

Crab collection and maintenance 

All crabs used in the study were collected from the banks of the tidal River Thames at either 

Richmond or Chelsea, and held in the Marine Aquarium at Royal Holloway University of 

London (RHUL). The crabs were collected from the foreshore at low tide. Crabs were hand-

picked before being placed into damp containers and stored within a cool box during 

transportation to RHUL where they were maintained in large holding tanks, containing 

aerated, de-chlorinated tap water at 12± 1 °C and a 12:12 L:D light regime.  
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Feeding trials  

Feeding trials were carried out from July - October 2013. In total, 100 crabs were 

incorporated into the study, being dispersed unevenly across 8 individual trial periods. 31 

crabs were given zebrafish eggs across three trials, 23 were given lumpfish across 2 trials, 29 

were given pacific salmon across 2 trials and 16 were given trout eggs in the final trial. 

Variations in the number of crabs included in each trial were solely determined by crab 

availability. Each trial operated over a four day period. On day one, crabs were separated into 

individual experimental tanks (10.7 × 22.5 × 18cm) or individual beakers (8 × 12cm), based 

on their size. For each animal, gender, standard carapace width (the distance between the 

posterior spines on either side of the carapace), chela width and length of the dactylus were 

recorded. All size measurements were measured to the nearest 0.1 mm using vernier scale 

callipers. The absence of chelae was recorded. The sex of crabs was distinguished by 

morphological differences in the width of the abdomen; males are characterised by a narrow 

v-shaped abdomen, whilst females possess a wider, u-shaped abdomen. Any asymmetry in 

the width of chelae on each crab was standardised by using the wider chela for the size 

measurement, and the dactylus of the same chela. The experimental containers were all filled 

with approximately 3250 ml of dechlorinated tap water, or 750 ml for beakers (water was 

changed between each trial), and provided with a source of aeration.  

On day two, following an acclimation period of 24h, crabs were provided with four 

eggs from one type of fish (Table 1). Eggs were deposited with the crabs for 24h, during 

which time some of their foraging behaviour was observed and recorded on video camera 

(See video appendix). As some crabs were placed in beakers, which were smaller than the 

holding tanks, eggs were deposited in close proximity to crabs in tanks to account for 

difference in encounter rates with eggs. After 24h the number of eggs consumed by each crab 

was recorded, and any remaining eggs discarded following dehydration with ethanol. Eggs 

that were not consumed were counted by eye, occasionally following removal with the aid of 

a fine sieve (mesh size 20). If eggs appeared half consumed, this was counted as half an egg. 

Signs of crushed/destroyed eggs were discounted. Following egg counts and the removal of 

remaining egg material, each crab was provided with a portion of fish flesh (perch) for 

approximately 12h to determine satiation levels. Foraging behaviour with perch was observed 

for 30 minutes. Consumption of perch (or lack of) was recorded on the final day. Crabs that 

had moulted during the trials were also noted, as this may have affected appetite. After each 

trial all crabs were placed back into their original tanks, and all equipment washed for 
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subsequent trials. Feeding trials were carried out in the dark, to best replicate the natural 

benthic habitat. Animals were also provided with debris in the form of shells and pebbles, 

again to create a similar habitat to that experienced in the wild. Prior to entry into the 

experimental containers all crabs were starved for approximately one week. A minority of 

crabs (8) were re-used in a second trial but given different eggs to negate any effects of 

previous experience with a particular egg type. These crabs were starved for the standardized 

1 week period between trials. A control tank was set up for each trial, in which eggs were 

placed into tanks without crabs to monitor their integrity after the given time period. 

Egg selection  

The eggs used in this study were largely selected on the basis of their size, with the 

aim of presenting a variety. Eggs were also chosen to incorporate both marine and freshwater 

fish species in the study and some groups native to the UK. Due to constraints on egg 

availability, in the case of Atlantic salmon, a comparable group was used (Pacific salmon). 

Under the same constraint, some of the eggs (trout and Pacific salmon) contained an added 

preservative (salt). Eggs from the fish species used here can thus be considered models 

against which eggs from more relevant species can be compared. The exact species producing 

salmon and trout eggs were not known. To appreciate the relative size of each egg against the 

mean chela width of crabs used in this study (6mm), a scale diagram was produced (Figure 

6). Relative egg size was calculated by dividing raw egg diameters into 6mm (for example, 

lumpfish eggs of a 2mm diameter were a third of the size of the average chela width) and 

scaling up this measurement appropriately to meet the crab chela image size. 

Data analysis 

All statistical analyses were carried out using the IBM SPSS statistical package (Version 21) 

and graphs and illustrations produced using Microsoft Word and Microsoft Excel. Normality 

of data was tested using a Kolmogorov-Smirnov test, and any data that was not normally 

distributed were analysed using non-parametric statistical tests, namely Spearman’s rank 

correlation, Kruskal-Wallis and Mann-Whitney U tests. To establish a correlation between 

carapace width and chela width/dactylus length, we used a Spearman’s rank correlation test 

for both male and female crabs. When comparing the number of the different egg types 

consumed within the trials we used a Kruskal-Wallis statistical test. To test for significant 

differences in the median proportion of each egg type consumed, we conducted a series of 

Mann-Whitney U tests. Correlations between the size of eggs and their consumption were 
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determined using a series of Spearman’s rank correlation tests. To establish if there was a 

difference in male/female consumption and consumption by those in tanks/beakers, a series 

Mann- Whitney U tests were used.  

Results  

Crab size 

Carapace width varied considerably among individual crabs, with measurements ranging 

from 13.8–39.1mm. Similarly, large differences were identified in chela width and dactylus 

length, with ranges from 3.4-10.5mm and 3.1-12.1mm respectively. Male and female 

carapace widths were not normally distributed (Kolmogorov-Smirnov Test: P <0.05). Male 

and female carapace widths were subsequently found to differ significantly (Mann-Whitney: 

U = 519, P = 0.01). A strong, statistically significant correlation between carapace width and 

chela width was identified in both male and female crabs independently (Spearman’s rank 

correlation test: r = 0.870, P<0.01; r = 0.856, P<0.01 respectively) and when male/female 

data were pooled (Spearman’s rank correlation test: r =0.896, P<0.01; Figure 1). In all three 

cases as the carapace width increased so did the width of chelae. A highly significant positive 

correlation was found between carapace width and dactylus length for males and females 

independently (Spearman’s rank correlation test: r = 0.890, P<0.01; r = 0.945, P<0.01) and 

combined (Spearman’s rank correlation test: r = 0.901, P<0.01). There was no significant 

difference among the mean carapace widths of crabs for each egg type (Kruskal-Wallis: χ2 = 

7.09, d.f. = 3, P = 0.069).  

Egg consumption 

There was considerable variation in the number of given eggs consumed by crabs across the 

different types within the trials. Overall, every type of egg was ingested by at least some 

crabs, but when the number of eggs consumed in each treatment were compared, significant 

differences were observed (Kruskal-Wallis: χ2 =40.18, d.f. = 3; P<0.001; Figure 2). Notably 

more crabs were found to consume none of their eggs in the zebrafish trials than all others, 

whilst considerably more crabs consumed 2 or more of their eggs in the lumpfish, salmon and 

trout treatments than in the zebrafish. Figure 3 displays these findings in terms of the median 

proportion of each egg type consumed. A series of post-hoc Mann-Whitney U tests 

demonstrated that significantly fewer zebrafish eggs were consumed in comparison to all 

other egg types (P<0.001 in all cases). A significant difference in consumption was also 
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observed between Pacific salmon and lumpfish eggs (Mann-Whitney: U =157, n = 54 P = 

0.003) but not between lumpfish and trout eggs (Mann-Whitney U = 141, n = 39, P = 0.228). 

The two latter egg types were the most readily consumed in these trials. With the exception 

of zebrafish, in which no crab ate all given eggs, for each egg type there were a number of 

crabs who consumed all four of their eggs and the portion of fish. These crabs varied in size 

(Table 3).  

There was also an interesting pattern in the size range of crabs consuming each of the 

four egg types. Crabs consuming the largest eggs, that is, the trout and salmon eggs, 

presented a broader size range than those consuming the smaller eggs (zebrafish), which were 

of a consistently narrower size range (Figure 4).  

Effect of crab size on egg consumption 

Crabs consuming at least one of their eggs varied considerably in size for every egg type. 

Smaller crabs did not appear confined to foraging smaller eggs (zebrafish and lumpfish), and 

the same can be said for larger crabs foraging larger eggs (salmon and trout). There was also 

variation in the number of given eggs consumed by crabs within each trial; many crabs 

consumed all of their given eggs, whilst others in the same trial and of similar size ate none 

or only some. In the crabs used in this study (<40mm carapace width), their size does not 

appear to limit foraging ability.  

Zebrafish eggs 

Frequency data for the number of eggs consumed was not normally distributed (Kolmogorov-

Smirnov: P<0.05) for all crabs. There was no significant correlation between carapace width 

(hence chelae/dactylus size) and egg consumption (Spearman’s rank correlation coefficient = 

-0.059, P>0.05; Figure 5A).  

Lumpfish eggs 

Carapace width and egg consumption were not normally distributed (Kolmogorov-Smirnov 

Test: P<0.05), and there was a weak, but statistically significant correlation, between 

carapace width and eggs consumed (Spearman’s rank correlation coefficient = -0.475, P < 

0.05; Figure 5B). The negative coefficient indicates that in some cases the number of eggs 

consumed decreased as the carapace width increased. 

Trout eggs 
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The number of eggs consumed was not normally distributed (Kolmogorov-Smirnov: P<0.05) 

and no significant correlation between carapace width and egg consumption was found 

(Spearman’s rank correlation coefficient = 0.421, P>0.05; Figure 5C). 

Pacific salmon fish eggs 

Number of eggs consumed was not normally distributed (Kolmogorov-Smirnov Test: 

P<0.05), and there was no statistically significant correlation between carapace width and egg 

consumption (Spearman’s rank correlation coefficient = 0.293, P>0.05; Figure 5D). 

Sex ratio  

The majority of crabs used in this study were male with only 21 of the one hundred mitten 

crabs being female. This gives an approximate 1:4 ratio. Of the 21 females, 11 of these were 

given trout eggs. In this particular trial there was no significant difference in the amount of 

eggs consumed by males and females (Mann-Whitney: U = 26.5, n = 16, P = 0.913). 

Similarly, in the zebrafish egg trial in which 7 females were used alongside 23 males, no 

significant difference in the amount of eggs consumed was found (Mann-Whitney: U = 81, n 

= 30, P = 1.000). The predation rates of male and female crabs for salmon and lumpfish eggs 

were not compared due to the low number of females used in these trials (Table 2). 

Variation and controls 

Whilst the majority of crabs were in similar physical condition, there was some small 

variation within this during the study. Of the one hundred crabs, exactly 10% had just one 

chela, and these individuals were dispersed throughout all treatments. Of this minority, many 

individuals (60%) did consume eggs, and in the Pacific salmon egg trial, which had the most 

single-chela animals, no significant difference in egg consumption was found between crabs 

with one chela and crabs with two (Mann Whitney U = 30.0, n = 26, P = 0.762). One crab 

possessed no chelae and was thus omitted from data analyses, though interestingly did 

consume perch (but not eggs). Three male crabs were also observed to moult during the trials, 

specifically all within the Pacific salmon egg trial. Only one of these individuals attempted to 

consume eggs, ingesting just one. Moulted crabs were included in analysis of crab size, but 

were excluded from data analysis on egg consumption, as this may have influenced foraging 

behaviour. Placing some crabs in beakers appeared to make no difference to egg 

consumption; no significant difference was found in consumption by crabs in tanks and 
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beakers (U = 22.5, P < 0.05). For all egg types the control tanks showed that there was no 

non-crab egg mortality during treatments. 

Discussion  

Egg consumption 

The risk of mitten crab predation on fish eggs varies among species of fish. Of the four egg 

types used in this study, zebrafish eggs were apparently the least favoured. This may be 

related to the small size (~1mm) of these eggs, which likely conferred a low encounter rate 

and would have been difficult and indeed costly to handle, particularly for larger crabs. This 

refers to the energetic cost of picking up small eggs, which would require fine muscular 

control in bringing the dactylus and propodus together firmly around the egg and possibly 

multiple attempts (which could lead to chela fatigue), for a relatively small calorific return. 

This selective behaviour has been observed in studies of prey handling in the shore crab, 

Carcinus meanus (Linnaeus, 1758), in which the optimum mussel size, that is, the size at 

which crabs gain most energy from prey intake whilst accounting for handling time, appeared 

to increase with crab size (Elner and Hughes 1978). One may therefore expect the crabs 

consuming zebrafish eggs to be the smallest crabs used, but this was not found to be the case; 

the zebrafish eggs ingested were done so by intermediately sized crabs (21.3mm-24.6mm 

Carapace width). Greater consumption rates for bigger eggs (2-6mm) may be a result of the 

increased ease of handling these eggs, particularly for salmon eggs which could be pierced as 

opposed to being picked up. This behaviour was observed in the salmon egg trials, with the 

use of both chelae and mouthparts to penetrate eggs and is reinforced by the fact that crabs 

appeared to struggle when picking up salmon eggs because occasionally they were dropped 

(see Video 2 of video appendix). This factor may explain the greater range of carapace widths 

observed in crabs consuming increasingly bigger eggs. Larger eggs would also likely confer 

higher nutritional gain for foraging efforts. If egg selection was based on optimal foraging 

behaviour, it is expected that a greater size range of crab would attempt the bigger eggs; 

small eggs would only be profitable to small crabs as opposed to larger eggs which would be 

beneficial to both small and large crabs. It is noteworthy that many of the crabs employed in 

this study were sub-adults and the largest crab used had a 39.1mm carapace width. The use of 

this size-range is relevant as crabs of this size spend the majority of their time in the 

freshwater stretches of rivers where they are most likely to encounter fish eggs. Adult mitten 

crabs can grow to a carapace width exceeding 84mm (The Natural History Museum 2013) 
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with a recent specimen from The Wash, Norfolk, UK exceeding 90mm carapace width (PFC, 

DM pers. obs.). It can be inferred that through the piercing activity observed in our study 

crabs this large would also be capable of foraging on salmon and possibly trout eggs. Studies 

incorporating a greater size range of crab including fully grown adults should be undertaken 

to explore this further.  

One factor which may have contributed to the indifference to zebrafish eggs is that 

they are largely transparent and thus the most difficult eggs to visually locate. It has been 

established that the compound eyes of crabs enable them to see colour (Lester 2006), and 

consequently zebrafish eggs may have been harder to find than the other egg types which 

were brightly coloured. This may have only been of minor significance however, as crabs do 

not rely solely on vision to detect prey items, and the importance of olfaction as means of 

locating prey has been suggested in studies of feeding behaviour in other crab species. One 

such study (Rebach 1996) showed that the rock crab, Cancer irroratus (Say, 1817) could 

detect prey items placed in a simple maze purely using olfactory cues, and when given 

visually identical shells with and without prey odour, crabs only fed on shells possessing the 

odour. In the present study, variation in the strength of odour produced by eggs may have, in 

part, been responsible for the disparity in egg consumption. The significance of colour as a 

mechanism of prey detection may be even less pronounced in the wild due to the fact that 

these crabs reside in turbid water. Tactility may play a greater role in the sourcing of prey. 

Culver (2005) reported that mitten crabs located salmonid larvae more rapidly when they 

accidentally swam into the legs of crabs. A similar observation has been made for mitten 

crabs feeding on actively swimming gammarid amphipods (C Mills unpubl. obs.). Whilst fish 

eggs are static, it can be suggested that the crabs used in our study were more likely to 

contact the larger eggs through their own movement and the resulting disruption of water. 

Variation in egg consumption may potentially be explained by differences in the 

chemical composition of eggs. Of the four egg types, zebrafish eggs were the only ones not to 

contain high levels of salt. Salmon and trout eggs both contained added salt as a preservative, 

and lumpfish, being a marine species, would have produced eggs in a highly saline 

environment. It can be suggested therefore that the crabs had a preference for particularly 

salty eggs; decapod crustaceans are known to utilise oesophageal taste receptors to accept or 

reject food once it enters the oral cavity (Aggio et al. 2012). In the same way, it is possible 

that the zebrafish eggs contained a chemical which deterred crabs form predating these. 

Variation in the nutritional content of eggs may also have contributed to the observed results 
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and, as discussed, may be implicated with egg size. For example zebrafish eggs of a 1mm 

diameter would arguably provide crabs with less protein and lipids than the lumpfish, salmon 

and trout eggs.  

Of the remaining three egg types each was consumed to a similar degree, although on 

average more lumpfish and trout eggs were consumed than salmon eggs. It can be suggested 

however, that since the salmon eggs were easily the largest eggs (6mm), a similar amount of 

egg material was actually consumed by crabs predating these. This is supported by the fact 

that fewer crabs were observed to consume perch flesh after all their eggs in the salmon egg 

trial than in the lumpfish and trout trials, indicating these crabs were more likely to be 

satiated following egg consumption. This study suggests therefore that crabs are capable of 

predating fish eggs of a 1-6mm diameter, and potentially those exceeding this.  

The lack of correlation between crab size and egg consumption suggests that the size 

of crabs was not a major factor affecting the foraging on fish eggs. This is not to say that the 

size of crabs had no impact whatsoever on their ability to consume eggs, but that on the most 

part, crabs of a broad size range were capable of handling and ingesting eggs of different 

diameters. Whilst the statistically significant correlation found between crab size and egg 

consumption in the crabs consuming lumpfish revealed that the larger crabs consumed fewer 

eggs than the smaller crabs, the fact that the largest crabs (carapace widths 35.6–36.4mm) 

still consumed some eggs suggests they do have the ability to predate eggs of this size 

(2mm). Due to the small number of adults used within the study (Figure 1), it was not 

possible to accurately determine the impact of maturity on egg consumption. Whilst it 

appeared, at least on the surface (Figure 2) that adults exhibited similar predation rates to 

juveniles, this may not be the case in the wild. It is expected that adults will have higher 

consumption rates than juveniles based on their size and mitten crabs are known to inhibit 

their feeding activity for several days before and after moulting, which occurs less frequently 

as crabs develop (Culver 2005). In addition, these crabs become increasingly carnivorous 

with adulthood (Culver, 2005). 

Threats to native fish 

The results obtained in this study suggest that small (<40mm) Chinese mitten crabs have the 

potential to predate a number of types of fish egg. In addition to a considerable overall degree 

of egg consumption within the trials, many of the crabs who consumed all their given eggs 

were also observed to consume fish flesh shortly afterwards (within a 30 minute period), 
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indicating the potential for individuals to exhibit higher predation rates than the trials 

suggested. As all crabs were starved for the same amount of time, and, as those consuming all 

of their eggs and perch ranged considerably in size, it is unlikely that these high predation 

rates are confined to largest crabs used, which may have been expected to consume more 

prey. The potential applicability of these results does depend on the likelihood of crabs 

encountering these different types of eggs in the wild, which can be influenced by a number 

of factors including the upstream migration distance of spawning fish and the timing of life 

cycle events for both fish species and Chinese mitten crabs.  

As mitten crabs spend the majority of their life cycle in freshwater (Herborg et al. 

2005), migrating back to high salinities once to reproduce, it can be suggested that the eggs of 

exclusively fresh water or anadromous species are most threatened by the predation from this 

crab species. Marine, and particularly estuarine, species of fish do still remain threatened 

however, by the biggest crabs, and hence quite probably the largest consumers, returning to 

saline environments to breed. Although the ability of larger mitten crabs (40–80+ mm 

carapace width) to consume eggs was not identified in this study, it can be inferred from the 

results that there is a risk of predation. Mitten crabs, in the UK, undergo their breeding 

migration from late summer (August) to early winter (Morritt et al. 2013) and it is thought 

that juveniles make an upstream migration into freshwater over March-July (Heborg et al. 

2003).  How these different stages in the life-cycle of the crab might potentially impact on 

fish spawning is unclear. For example it is not known to what degree adults feed during their 

reproductive migration. What is clear, however, is that spawning fish will potentially overlap 

with intermediate stage, sub-adult crabs (similar to the size range used in the present study) 

from different cohorts particularly in the freshwater reaches of rivers. Thus it could be argued 

that there is a persistent predation risk for fish eggs from such crabs and this risk may 

periodically increase / decrease depending on the crab’s life-cycle. Fish such as Atlantic 

salmon may be at increased risk from predation, as spawning occurs at variable times of the 

year among different populations (Aas et al. 2011) and is likely, at least in some cases, to 

overlap with periods of elevated crab presence. Brown trout (Salmo trutta) breeding in 

freshwater may encounter fewer crabs when laying their eggs due the timing of their 

spawning season, which in native species occurs in winter (Scottish Natural Heritage, 2012). 

Alongside the timing of breeding events in fish species, the location of spawning sites 

may be an important factor affecting the risk of crab predation on fish eggs. Whilst Atlantic 

salmon can migrate as far as 1600km from the sea to spawn, it is thought that the majority 



13 
 

only travel only 160km upstream (Burton and Burton 2002). Anadromous brown trout 

migrate upstream to lay and fertilize their eggs, and this has been shown to occur at around 

100km upstream (Crawford 2001). In the case of resident freshwater brown trout, spawning 

migration is more limited; tracking studies in European rivers have found individuals to 

migrate only as far upstream as 28km, with some travelling significantly shorter distances 

than this (Arnekleiv and Ronnin 2004). Mitten crabs can migrate distances of 1,500km from 

the sea (PF Clark et al. 1998), and thus it can be inferred that they have the potential to travel 

as far up rivers as most spawning salmon and trout. Although such impressive distances have 

only been observed by crabs in their native environment, studies of migrating crabs in British 

rivers have observed significant increases in upstream movement over time, with distance 

rising from 16km per year in the early 1990s to 49km per year in the late 1990s (Herborg et 

al. 2005). Latest records of mitten crab sightings (www.mittencrabs.org) indicate that crabs 

have been found as far upstream as Didcot in the River Thames, which, using mapped 

distances on aerial photographs (Harrison 2004) was calculated to be approximately 280km 

from the entrance to the North Sea at Southend. It is now thought that this upstream 

migration could reach 500km per year (Bentley 2011), and would not be surprising 

considering invasive mitten crabs in the River Elbe, Germany, have been noted to progress as 

far as 700–780km upstream (PF Clark et al. 1998). As this exceeds the length of all UK 

Rivers, it can be suggested that all freshwater fish spawning sites are potentially accessible to 

mitten crabs, if distance alone is the only constraint. In practice other topographic factors will 

also play a role. The recent recovery of Chinese mitten crab remains in the River Clyde, 

suggests the species is already present in Scotland, where the potential impact on trout and 

salmon fisheries is of considerable concern (Yeomans and J. Clark 2015). Fish species 

spawning in freshwater are probably more likely to encounter mitten crabs than marine 

species due to the reduced surface area of rivers in comparison to the sea and the resulting 

increase in habitat overlap between fish and crabs. In addition, we do not know the effect of 

spawning behaviour by mitten crabs on foraging activity; it is quite possible that foraging 

effort is reduced when breeding.  

The spawning strategies and defensive mechanisms employed by fish, especially with 

regards to site selection, may impact the probability of crabs finding and predating fish eggs. 

In this study, fish eggs were not hidden from mitten crabs and were instead placed in close 

proximity to the animals. In the wild crabs are unlikely to encounter eggs as readily, as they 

are often laid in crevices or within substrates to remain hidden from potential predators. This 

http://www.mittencrabs.org/
http://www.theguardian.com/profile/adam-vaughan
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may indicate that eggs in the wild are more sheltered from crab predation than the results of 

this study suggest. Indeed this has been demonstrated when it comes to potential predation of 

salmon eggs by invasive crayfish, Pacifastacus leniusculus (Gladman et al. 2012). Salmonids 

lay their eggs in nests termed redds, and often in association with gravel and stone substrates. 

Culver (2005) explored the ability of mitten crabs to forage within a gravel substrate in her 

study, discovering that juvenile mitten crabs were relatively unlikely to predate hidden 

(buried) eggs, in contrast to adults who appeared to forage at greater depths within this 

substrate. More recent research using mitten crabs suggests they burrow to a considerable 

extent and are subsequently impacting sediment through bioturbation (A. Blight, University 

of St Andrews, pers. comm.). Such activity suggests crabs are likely to come across buried 

eggs within a mud substrate. In some European rivers average nest depths in Atlantic salmon 

have been recorded at 12.9cm (Guademar et al. 2000), over double the depth at which 

Gladman et al. (2012) buried eggs within their study. It is thus crucial to establish the 

maximum and indeed likely depths at which crabs may burrow to and forage in for gravel and 

mud substrates in the wild to accurately determine the extent to which buried eggs may be 

protected from crab predation. In the case of lumpfish, females lay their eggs on rocks among 

sea weed beds (Bañón et al. 2008), a possible habitat for crabs to encounter based on their 

omnivorous nature. As in common in fish species, male lumpfish guard their eggs once laid 

and fertilized. Such activity may deter crabs, especially by larger fish species. The possession 

of sharp claws by crabs may enable them to counter such aggressive interactions. Veldhuizen 

and Stanish (1999) suggest that mitten crabs may be in reach of the eggs of other nesting fish 

such as centrarchids, and raise the potentially crucial point that predation rates on fish eggs 

may be lower in cooler climates where the metabolic rate of crabs will slow (Xiao-Bo et al. 

2003).      

The results obtained in this study may be used to infer the risk mitten crabs pose to 

specific groups of native fish. As discussed, the least predated eggs in this study were 

zebrafish eggs, which may be linked to their small size (1mm). If size is, at least in part, 

responsible for the low consumption rates observed, it can be suggested that fish species 

producing eggs of a similar diameter may only be minimally threatened by mitten crab 

predation. Native British fish in this category include European perch (Perca fluviatilis 

Linnaeus, 1758), whose eggs are ca. 1.28mm in diameter, common rudd (Scardinius 

erythrophthalmus Linnaeus, 1758), ca. 1.33mm in diameter, and bream (Abramis brama 

Linnaeus, 1758) with an estimated egg diameter of 1.64mm (Bonisławska et al. 2001). 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/10th_edition_of_Systema_Naturae
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European smelt, Osmerus eperlanus also belongs to this category, producing eggs of a 1mm 

diameter (Jones and McCarthy 2014) and spawning in UK Rivers such as the Forth, Thames 

and Cree. Smelt is considered to be majorly threatened following its decline and 

disappearance from many British rivers including the Clyde and Almond (Maitland and Lyle 

1996). Though our study suggests that crabs may have preference for larger eggs, it is 

noteworthy that in the wild crabs might not usually come across solitary eggs; many fish 

species, including perch, lay their eggs in clusters, thus creating the appearance of a larger 

prey item and most probably increasing encounter rates by crabs. Those native species with a 

larger diameter of egg that are comparable to the lumpfish, trout and salmon eggs used in this 

study may be at a higher risk from mitten crab predation. These include pike (Esox Lucius 

Linnaeus,1758) whose eggs are ca. 2.68mm in diameter, (Bonisławska et al. 2001) brown 

trout (Salmo trutta Linnaeus, 1758), ca. 4.64mm in diameter (Radnak et al. 2006), and 

Atlantic salmon, whose eggs are comparable to the Pacific salmon eggs used here. All of 

these are freshwater or anadromous fish, and therefore could be exposed to risk of mitten crab 

predation. Marine fish that may be at risk include the European plaice, Pleuronectes platessa 

(Linnaeus, 1758), whose eggs are approximately 2mm after spawning and grow to about 

7mm prior to hatching (Sussex ICFA) and of which populations are known to spawn in the 

Irish sea and Bristol channel (Dunn and Pawson 2002). The predation of brown trout and 

Atlantic salmon eggs by a growing population of mitten crabs in British waters may be of 

greatest concern, as these are of significant commercial value; reductions in the general 

population could have significant economic repercussions alongside increasing concerns over 

the conservation status of these fish in Britain. Rivers including the Dee, Tweed and Tay 

have already been designated as Special Areas of Conservation (Joint Nature Conservation 

Committee) due to the importance of resident wildlife, and are known to support high quality 

populations of Atlantic salmon. Indeed this is not the first study to suggest that salmonid eggs 

may in particular be at risk from such predation (Culver 2005).  

Implications for future research 

The results obtained in this study are useful in providing an indication of the potential for 

mitten crabs to consume fish eggs and a framework for future research. In subsequent studies 

a wider range of egg types should be incorporated into feeding experiments, including those 

of native species, which may be particularly valuable in enabling us to conclude accurately 

the degree to which these species are vulnerable from mitten crab predation. Moreover, 

incorporation of a broader size range of crabs including fully grown adults may be useful in 
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determining the size up to which crabs are able to forage the differently sized eggs, if indeed 

there is a limit. In light of this initial study, and in combination with other research into the 

negative impacts of mitten crabs on non-native ecosystems, it is crucial that serious 

consideration is given to controlling the further spread of the Chinese mitten crab, especially 

in Scotland, and resources are invested in order to facilitate this. 
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Tables 

 

Table 1. The different types of eggs used in the study. Egg diameters were measured using a 

ruler, except for the zebrafish embryos which were too small to accurately measure in this 

way; size data were obtained from the National Institute of Biology (2011). 

 

Egg type  Approximate 

diameter 

(mm) 

Colour  Preservative  Source  

Zebrafish  1 Virtually 

transparent  

None  Royal Holloway 

laboratory breeding 

culture  

Lumpfish 

(Cyclopterus 

lumpus) 

2 Black or red (both 

used in alternate 

trials) 

None Independent fishmonger  

Trout 4 Red Salt Online supplier 

(Amazon.co.uk) 

Pacific salmon 

(Oncorhynchus) 

6 Orange  Salt Waitrose supermarket  
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Table 2. The proportion of males and females used within each trial alongside their sizes and egg  

consumption. Data excludes three male crabs that moulted during the trials and one that possessed no chelae.  

 

Trial  Egg type No. of 

males 

Mean 

crab 

size 

(mm) 

Size 

range 

(mm) 

% 

Males  

Mean 

proportion 

of eggs 

consumed  

No. of 

females 

Mean 

crab size 

(mm) 

Size 

range 

(mm) 

% females Mean 

proportion 

of eggs 

consumed  

1 Zebrafish 11 24.14 12.40 100 0 0 - - 0 - 

2 Zebrafish 6 24.53 7.80 100 0.17 0 - - 0 - 

3 Pacific 

salmon 

14 24.65 21.70 100 1.43 0 - - 0 - 

4 Pacific 

salmon  

12 24.16 17.5 100 2.33 0 - - 0 - 

5 Lumpfish 12 26.73 19.5 100 2.71 0 - - 0 - 

6 Lumpfish 8 19.93 9.6 72.73 3.50 3 18.33 2.70 27.27 3.33 

7 Zebrafish  7 18.89 10.8 50 0.86 7 20.43 23.30 50 0.29 

8 Trout 5 18.96 9.3 31.25 2.20 11 21.73 20.60 68.75 2.18 
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Table 3. The size of all crabs consuming all of their eggs and fish flesh for each egg type. 

Red values represent females, black represent males, and those underlined represent adults. 

 

Egg type Egg 

diameter 

(mm) 

Raw 

number 

of 

crabs 

Percentage 

of crabs 

consuming 

all eggs + 

perch (%) 

Carapace width of highlighted crabs 

(mm) 

Zebrafish 1 31 0 - 

Lumpfish 2 23 30.4 28.1 27.4 24.9 17.5 18.3 18.7 18.5 

Pacific 

salmon 

6 26 15.4 28.1 28.0 33.8 27.4 

Trout  4 16 58.3 25.9 23.l 19.2 17.6 14.6 31.9 35.2 
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Captions 

Figure 1. Correlation of carapace width and chela width for male and female mitten crabs 

(P<0.01, Spearman’s correlation coefficient =0.896). Starred data points represent adults, all 

others represent juveniles. 

 

Figure 2. Percentage of crabs consuming the different number of given eggs. The number of 

eggs consumed by crabs for each of the given egg types. A. zebrafish eggs, B. Lumpfish 

eggs, C. Pacific salmon eggs, D. trout eggs. J: juvenile A: Adult. Percentage of crabs is used 

instead of raw number due to the disparity in the number of crabs given the different fish 

eggs. The number in brackets is the raw number of crabs given each egg type.  

 

Figure 3. The median proportion of each egg type consumed by male and female mitten 

crabs, alongside the size of each egg (Kruskal-Wallis independent samples test: P<0.05) ZF: 

zebrafish, LF: lumpfish, T: trout, PS: Pacific salmon, ED: Egg diameter, MPC: Median 

proportion consumed. Letters above bars denote the statistical differences between 

proportions of consumed eggs. 

 

Figure 4. Size range of crabs consuming each egg type against the size of each egg. Crab size 

ranges= 8.8mm (zebrafish), 19.6mm (lumpfish), 20.6mm (trout) and 21.7mm (Pacific 

salmon). 

 

Figure 5. Carapace width against number of eggs consumed for each of the four egg types, 

arranged in order of increasing egg size A. zebrafish embryo, B. lumpfish roe, C. trout roe, D. 

salmon roe. The only significant correlation between egg consumption and carapace width 

was for crabs consuming Lumpfish eggs (Spearman’s rank correlation test: P < 0.05). 

 

Figure 6. The relative size of fish eggs against the mean width of a chela. The approximate 

sizes of eggs were obtained by dividing egg sizes into 6 (the mean chela width of crabs used 

in this study) and using the scale to correlate these to the image size of chela (13mm). Of the 

crabs with a 6mm chela width the average carapace width was 22.1mm. Image obtained from 

http://www.padil.gov.au/pests-and-diseases/Pest/Main/136524/8988. 

 

  



26 
 

 

Figures 

 

Figure 1. Correlation of carapace width and chela width for male and female mitten crabs 

(P<0.01, Spearman’s correlation coefficient =0.896). Starred data points represent adults, 

whilst all others represent juveniles. 
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Figure 2. Percentage of crabs consuming the different number of given eggs. The number of eggs consumed by crabs for each of the given egg 

types. A. zebrafish eggs, B. lumpfish eggs, C. Pacific salmon eggs, D. trout eggs. J: juvenile A: Adult. Percentage of crabs is used instead of raw 

number due to the disparity in the number of crabs given the different fish eggs. The number in brackets is the raw number of crabs given each 

egg type.  
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Figure 3. The median proportion of each egg type consumed by male and female mitten 

crabs, alongside the size of each egg (Kruskal-Wallis independent samples test: P<0.05) ZF: 

zebrafish, LF: lumpfish, T: trout, PS: Pacific salmon, ED: Egg diameter, MPC: Median 

proportion consumed. Letters above bars denote the statistical differences between 

proportions of consumed eggs. 
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Figure 4. Size range of crabs consuming each egg type against the size of each egg. Crab size 

ranges= 8.8mm (zebrafish), 19.6mm (lumpfish), 20.6mm (trout) and 21.7mm (Pacific 

salmon). 
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Figure 5. Carapace width against number of eggs consumed for each of the four egg types, arranged in order of increasing egg size A. zebrafish 

embryo, B. lumpfish roe, C. trout roe, D. salmon roe. The only significant correlation between egg consumption and carapace width was for 

crabs consuming Lumpfish eggs (Spearman’s rank correlation test: P < 0.05). 

 



33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The relative size of fish eggs against the mean width of a chela. The approximate 

sizes of eggs were obtained by dividing egg sizes into 6 (the mean chela width of crabs used 

in this study) and using the scale to correlate these to the image size of chela (13mm). Of the 

crabs with a 6mm chela width the average carapace width was 22.1mm. Image obtained from 

http://www.padil.gov.au/pests-and-diseases/Pest/Main/136524/8988. 
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